Showing 1,621 - 1,640 results of 7,145 for search '(improved OR improve) model optimization algorithm', query time: 0.32s Refine Results
  1. 1621

    GENETIC ALGORITHM-PID CONTROLLER FOR MODEL ORDER REDUCTION PANTOGRAPHCATENARY SYSTEM by Nasir A. Al-Awad, Izz K. Abboud, Muaayed F. Al-Rawi

    Published 2021-06-01
    “…Then, in this paper, we current an active manipulate of the minimize order model of pantograph-catenary system .The proposed manipulate approach implements an optimization technique, like particle swarm (PSO), the usage of a frequent approximation of the catenary equal stiffness. …”
    Get full text
    Article
  2. 1622

    A recommender algorithm based on SVD ++model under trust network by Peiwu CHEN, Fangxing SHU

    Published 2021-07-01
    “…Recommender algorithms are usually modeled based on user behavior data.However, the sparseness of explicit behavior data may cause the cold start problem of recommender algorithms.In order to solve the impact of data sparseness and cold-start problems on the effect of recommender algorithms, implicit trust relationship based on user similarity was introduced based on the existing revealed trust relationship, and a new recommender algorithm was designed through the SVD++ implicit semantic model.In order to improve the effect of the algorithm, the neighborhood model was integrated further, and the algorithm score prediction formula and loss function were derived.In the Epinions open source data set, RMSE and MAE were used as test indicators, and comparative experiments were conducted on the entire user set and the cold start user set.The experimental results show that the recommender algorithm can optimize the cold start problem of the original recommender algorithm to a certain extent, and achieve a better rating prediction accuracy.…”
    Get full text
    Article
  3. 1623

    An analytical optimal calibration framework of bonded particle model for rock strength envelop modelling by Xiaoxiong Zhou, Hongyi Xu, Qiuming Gong, Yanan Ma, Weiqiang Xie

    Published 2025-05-01
    “…Adaptive moment estimation (Adam) was chosen as the iterative optimization algorithm to avoid the vanishing gradient problem. …”
    Get full text
    Article
  4. 1624

    Study on the Switching Model Predictive Control Algorithm in Batch Polymerization Process by Jong Nam Kim, Chun Bae Ma, Hyok Jo, Un Chol Han, Hyon-Tae Pak, Son Il Hong, Ri Myong Kim

    Published 2025-06-01
    “…Finally, a switching model predictive control algorithm that determines the optimal manipulated value based on the on-line updated step response model is constructed, and a cascade control system using this algorithm is introduced to the temperature control of batch polyvinyl chloride suspension polymerization process. …”
    Get full text
    Article
  5. 1625

    The Elitist Non-Dominated Sorting Crisscross Algorithm (Elitist NSCA): Crisscross-Based Multi-Objective Neural Architecture Search by Zhihui Chen, Ting Lan, Dan He, Zhanchuan Cai

    Published 2025-04-01
    “…In addition, a corresponding mutation operator is added pertinently based on the performance of the proxy model, and the elitist strategy is improved through pruning to reduce the impact of abnormal fitnesses. …”
    Get full text
    Article
  6. 1626
  7. 1627

    Improving Secrecy Capacity in the Face of Eavesdropping in SWIPT CIoT Networks With Actor-Critic DRL by Nada Abdel Khalek, Walaa Hamouda

    Published 2025-01-01
    “…One of the key enablers of 6th-generation (6G) wireless networks is cognitive radio, offering optimized spectrum utilization, enhanced device intelligence, and improved security. …”
    Get full text
    Article
  8. 1628

    A Wi-Fi RSS-RTT Indoor Positioning Model Based on Dynamic Model Switching Algorithm by Xu Feng, Khuong An Nguyen, Zhiyuan Luo

    Published 2024-01-01
    “…To address this challenge, we propose an algorithm that dynamically selects the most optimal Wi-Fi positioning model for each location. …”
    Get full text
    Article
  9. 1629
  10. 1630

    Meta-transformer: leveraging metaheuristic algorithms for agricultural commodity price forecasting by G. H. Harish Nayak, Md. Wasi Alam, B. Samuel Naik, B. S. Varshini, G. Avinash, Rajeev Ranjan Kumar, Mrinmoy Ray, K. N. Singh

    Published 2025-05-01
    “…To address these challenges, this study proposes a novel framework that combines Transformer models with Metaheuristic Algorithms (MHAs), including the Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), and Particle Swarm Optimization (PSO) to enhance agricultural price forecasting accuracy. …”
    Get full text
    Article
  11. 1631

    Inverse methods and integral-differential model demonstration for optimal mechanical operation of power plants – numerical graphical optimization for second generation of tribology... by Casesnoves Francisco

    Published 2018-07-01
    “…Stepping forward from a previous conference contribution, the article focuses on extension of inverse problem algorithms to integral-differential modelling and formal/strict demonstration of graphical-optimization method. …”
    Get full text
    Article
  12. 1632

    Particle Swarm Optimization Based Optimal Design of Six-Phase Induction Motor for Electric Propulsion of Submarines by Lelisa Wogi, Amruth Thelkar, Tesfabirhan Shoga Tahiro, Tadele Ayana, Shabana Urooj, Samia Larguech

    Published 2022-04-01
    “…This research presented a comparison of optimal model design of a six phase squirrel cage induction motor (IM) for electric propulsion by using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). …”
    Get full text
    Article
  13. 1633
  14. 1634

    Research on rock strength prediction model based on machine learning algorithm by Xiang Ding, Mengyun Dong, Wanqing Shen

    Published 2024-12-01
    “…By selecting different features, the optimal feature combination for predicting rock compressive strength was obtained, and the optimal parameters for different models were obtained through the Sparrow Search Algorithm (SSA). …”
    Get full text
    Article
  15. 1635

    Study on the anti-penetration randomness of metal protective structures based on optimized artificial neural network by Lan Liu, Weidong Chen, Shengzhuo Lu, Yanchun Yu, Mingwu Sun

    Published 2025-05-01
    “…Abstract In order to study the Anti-Penetration Randomness of Metal Protective Structures (APRMPS) for the penetration probabilities of Metal Protective Structures under the action of the basic random variables, this paper analyzes the candidates for the basic random variables and the random response of APRMPS, and, on the basis of the improvement of Genetic Algorithm, proposes Dynamic Lifecycle Genetic Algorithm, including its main processes of the optimization of Back Propagation Neural Network. …”
    Get full text
    Article
  16. 1636

    Aerodynamic Parameter Identification of Projectile Based on Improved Extreme Learning Machine and Ensemble Learning Theory by Tianyi Wang, Wenjun Yi, Youran Xia

    Published 2023-01-01
    “…The improved particle swarm optimization algorithm (IPSO) with an adaptive update strategy is used to optimize the weight and threshold of ELM. …”
    Get full text
    Article
  17. 1637

    Enhancing Sustainable Manufacturing in Industry 4.0: A Zero-Defect Approach Leveraging Effective Dynamic Quality Factors by Rouhollah Khakpour, Ahmad Ebrahimi, Seyed Mohammad Seyed Hosseini

    Published 2025-06-01
    “…The methodology follows these steps:</p> <p style="text-align: left;">Step 1: Analysing effective dynamic factors of product quality</p> <p style="text-align: left;">Step2: Evaluating Triple Bottom Line (TBL) criteria</p> <p style="text-align: left;">Step 3: Measuring current sustainability state</p> <p style="text-align: left;">Step 4: Implementing ZDM strategies</p> <p style="text-align: left;">Step 5: Measuring improvements in sustainability</p> <p style="text-align: left;">&nbsp;</p> <p style="text-align: left;"><strong>Results</strong></p> <p style="text-align: left;">&nbsp;<strong>Effects</strong> <strong>of Single Unit Defective Product on TBL Sustainability State in Value Stream</strong></p> <p style="text-align: left;">&nbsp;</p> <p style="text-align: left;">&nbsp;</p> <p style="text-align: left;">Summary of current sustainability state</p> <table style="float: left;" width="479"> <tbody> <tr> <td width="64"> <p>Product model</p> </td> <td width="56"> <p>Daily schedule (set)</p> </td> <td width="61"> <p>Defective product rate (%)</p> </td> <td width="58"> <p>Number of defective products (set)</p> </td> <td width="85"> <p>Environmental sustainability</p> <p>State</p> </td> <td width="78"> <p>Social sustainability</p> <p>state</p> </td> <td width="78"> <p>Economic sustainability</p> <p>state</p> </td> </tr> <tr> <td width="64"> <p>Refrigerator</p> </td> <td width="56"> <p>480 set</p> </td> <td width="61"> <p>3%</p> </td> <td width="58"> <p>15</p> </td> <td width="85"> <p>Wasted material: 15 set</p> <p>&nbsp;</p> <p>Wasted energy: 239.25 kwh</p> </td> <td width="78"> <p>Waste of manpower: 1650 pmin</p> </td> <td width="78"> <p>Wasted costs:</p> <p>3265.65 $</p> </td> </tr> </tbody> </table> <p style="text-align: left;"><strong>&nbsp;</strong></p> <p style="text-align: left;">&nbsp;</p> <p style="text-align: left;">Future TBL sustainability state</p> <table style="float: left;" width="486"> <tbody> <tr> <td width="67"> <p>Product model</p> </td> <td width="59"> <p>Daily schedule (set)</p> </td> <td width="56"> <p>Defective product rate (%)</p> </td> <td width="16"> <p>&nbsp;</p> </td> <td width="61"> <p>Number of defective products (set)</p> </td> <td width="83"> <p>Environmental sustainability</p> <p>state</p> </td> <td width="82"> <p>Social sustainability state</p> </td> <td width="62"> <p>Economic sustainability state</p> </td> </tr> <tr> <td width="67"> <p>Refrigerator</p> </td> <td width="59"> <p>480 set</p> </td> <td width="56"> <p>0.2%</p> </td> <td width="16"> <p>&nbsp;</p> </td> <td width="61"> <p>1</p> </td> <td width="83"> <p>Wasted material: 1 set</p> <p>&nbsp;</p> <p>Wasted energy: 15.95 kwh</p> </td> <td width="82"> <p>Waste of manpower: 110 pmin</p> </td> <td width="62"> <p>Wasted costs:</p> <p>217.71 $</p> </td> </tr> </tbody> </table> <p style="text-align: left;"><strong>&nbsp;</strong></p> <p style="text-align: left;">&nbsp;</p> <p style="text-align: left;">&nbsp;</p> <p style="text-align: left;">&nbsp;</p> <p style="text-align: left;">&nbsp;</p> <p style="text-align: left;">&nbsp;</p> <p style="text-align: left;">&nbsp;</p> <p style="text-align: left;">&nbsp;</p> <p style="text-align: left;">&nbsp;</p> <p style="text-align: left;">&nbsp;</p> <p style="text-align: left;"><strong>Discussion and conclusion</strong></p> <p style="text-align: left;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Implementing the proposed approach aimed at achieving zero-defect products and enhancing TBL sustainability as its ultimate goal has provided valuable insights for practitioners and tangible improvements in the case study of this research. …”
    Get full text
    Article
  18. 1638

    Gaussian Process Regression Total Nitrogen Prediction Based on Data Decomposition Technology and Several Intelligent Algorithms by WANG Yongshun, CUI Dongwen

    Published 2023-01-01
    “…Total nitrogen (TN) is one of the important indicators to reflect the degree of water pollution and measure the eutrophication status of lakes and reservoirs.To improve the accuracy of TN prediction,based on the empirical wavelet transform (EWT) and wavelet packet transform (WPT) decomposition technology,this paper proposes a Gaussian process regression (GPR) prediction model optimized by osprey optimization algorithm (OOA),rime optimization algorithm (ROA),bald eagle search (BES) and black widow optimization algorithm (BWOA) respectively.Firstly,the TN time series is decomposed into several more regular subsequence components by EWT and WPT respectively.Then,the paper briefly introduces the principles of OOA,ROA,BES,and BWOA algorithms and applies OOA,ROA,BES,and BWOA to optimize GPR hyperparameters.Finally,EWT-OOA-GPR,EWT-ROA-GPR,EWT-BES-GPR,EWT-BWOA-GPR,WPT-OOA-GPR,WPT-ROA-GPR,WPT-BES-GPR,WPT-BWOA-GPR models (EWT-OOA-GPR and other eight models for short) are established to predict the components of TN by the optimized super-parameters.The final prediction results are obtained after reconstruction,and WT-OOA-GPR,WT-ROA-GPR,WT-BES-GPR and WT-BWOA-GPR models based on wavelet transform (WT) are built.Eight models,including EWT-OOA-SVM based on support vector machine (SVM),the paper compares the unoptimized EWT-GPR,WPT-GPR models,and the uncomposed OOA-GPR,ROA-GPR,BES-GPR,and BWOA-GPR models.The models were verified by the monitoring TN concentration time series data of Mudihe Reservoir,an important drinking water source in China,from 2008 to 2022.The results are as follows.① The average absolute percentage error of eight models such as EWT-OOA-GPR for TN prediction is between 0.161% and 0.219%,and the coefficient of determination is 0.999 9,which is superior to other comparison models,with higher prediction accuracy and better generalization ability.② EWT takes into account the advantages of WT and EMD.WPT can decompose low-frequency and high-frequency signals at the same time.Both of them can decompose TN time series data into more regular modal components,significantly improving the accuracy of model prediction,and the decomposition effect is better than that of the WT method.③ OOA,ROA,BES,and BWOA can effectively optimize GPR hyperparameters and improve GPR prediction performance.…”
    Get full text
    Article
  19. 1639

    An Assessment of High-Order-Mode Analysis and Shape Optimization of Expansion Chamber Mufflers by Min-Chie CHIU, Ying-Chun CHANG

    Published 2014-12-01
    “…Using an eigenfunction (higher-order-mode analysis), a four-pole system matrix for evaluating acoustic performance (STL) is derived. To improve the acoustic performance of the expansion chamber muffler, three kinds of expansion chamber mufflers (KA-KC) with different acoustic mechanisms are introduced and optimized for a targeted tone using a genetic algorithm (GA). …”
    Get full text
    Article
  20. 1640