-
2501
Challenges of the Biopharmaceutical Industry in the Application of Prescriptive Maintenance in the Industry 4.0 Context: A Comprehensive Literature Review
Published 2024-11-01“…The results obtained revealed that prescriptive maintenance offers opportunities for improvement in the production process, such as cost reduction and greater proximity to all actors in the areas of production, maintenance, quality, and management. …”
Get full text
Article -
2502
From Neural Networks to Emotional Networks: A Systematic Review of EEG-Based Emotion Recognition in Cognitive Neuroscience and Real-World Applications
Published 2025-02-01“…Despite these advances, challenges remain more significant in real-time EEG processing, where a trade-off between accuracy and computational efficiency limits practical implementation. High computational cost is prohibitive to the use of deep learning models in real-world applications, therefore indicating a need for the development and application of optimization techniques. …”
Get full text
Article -
2503
Bridging the Gap: A Review of Machine Learning in Water Quality Control
Published 2025-07-01“…ML-driven solutions, including LSTM networks and random forest models, enable real-time anomaly detection (e.g., 85% accurate algal bloom prediction 7 days in advance) and operational optimization (15% cost reduction in wastewater treatment). …”
Get full text
Article -
2504
Site-specific prediction of O-GlcNAc modification in proteins using evolutionary scale model.
Published 2024-01-01“…Computational approaches, including protein language models and machine learning algorithms, have emerged as valuable tools for predicting O-GlcNAc sites, reducing experimental costs, and enhancing efficiency. …”
Get full text
Article -
2505
Integrating Learning-Driven Model Behavior and Data Representation for Enhanced Remaining Useful Life Prediction in Rotating Machinery
Published 2024-10-01“…This allows for more precise maintenance scheduling from imperfect predictions, reducing downtime and operational costs while improving system reliability under varying conditions.…”
Get full text
Article -
2506
PP-QADMM: A Dual-Driven Perturbation and Quantized ADMM for Privacy Preserving and Communication-Efficient Federated Learning
Published 2025-01-01“…We provide a rigorous theoretical proof of convergence, showing that PP-QADMM converges to the optimal solution for convex problems while achieving a convergence rate comparable to standard ADMM, but with significantly lower communication and energy costs, and robust privacy protection. …”
Get full text
Article -
2507
Integrating Positron Emission Tomography Combined with Computed Tomography Imaging into Advanced Radiation Therapy Planning: Clinical Applications, Innovations, and Challenges
Published 2025-04-01“…The review also addresses persistent barriers, including limited tracer specificity, spatial resolution constraints, integration complexity, and high implementation costs. Beyond technical discussions, we reflect on emerging ethical considerations, such as transparency in AI-driven planning, patient consent in algorithm-assisted treatment decisions, and the need for equitable access to PET/CT technologies. …”
Get full text
Article -
2508
Machine Learning Applications in Gray, Blue, and Green Hydrogen Production: A Comprehensive Review
Published 2025-05-01“…Among these, green hydrogen—particularly via water electrolysis and biomass gasification—received the most attention, reflecting its central role in decarbonization strategies. ML algorithms such as artificial neural networks (ANNs), random forest (RF), and gradient boosting regression (GBR) have been widely applied to predict hydrogen yield, optimize operational conditions, reduce emissions, and improve process efficiency. …”
Get full text
Article -
2509
-
2510
Socio-Economical Analysis of a Green Reverse Logistics Network under Uncertainty: A Case Study of Hospital Constructions
Published 2024-10-01“…It suggests potential future directions, such as the application of metaheuristic algorithms and improved stochastic planning methods.…”
Get full text
Article -
2511
Enhancing Model Accuracy of UAV-Based Biomass Estimation by Evaluating Effects of Image Resolution and Texture Feature Extraction Strategy
Published 2025-01-01“…Maize AGB estimation models were established based on SIs only and combination of SIs and TFs using machine learning algorithms. We explored the impacts of spatial resolution and TF_CP on the performance of AGB models and analyzed the potentials of combination of SIs and TFs for improving maize AGB estimation accuracy. …”
Get full text
Article -
2512
Revolutionizing Clear-Sky Humidity Profile Retrieval with Multi-Angle-Aware Networks for Ground-Based Microwave Radiometers
Published 2025-01-01“…Based on the 7-year (2018–2024) in situ measurements from Beijing, Nanjing, and Shanghai, validation results reveal that AngleNet achieves substantial improvements, with an average R2 of 0.71 and a root mean square error (RMSE) of 10.39%, surpassing conventional models such as LGBM (light gradient boosting machine) and RF (random forest) by over 10% in both metrics, and demonstrating a remarkable 41% increase in R2 and a 10% reduction in RMSE compared to the previous BRNN method (batch normalization and robust neural network). …”
Get full text
Article -
2513
A deep neural network framework for estimating coastal salinity from SMAP brightness temperature data
Published 2025-06-01“…The framework leverages machine learning interpretability tools (Shapley Additive Explanations, SHAP) to optimize input feature selection and employs a grid search strategy for hyperparameter tuning.Results and discussionSystematic validation against independent in-situ measurements demonstrates that the baseline DNN model constructed for the entire region and time period outperforms conventional algorithms including K-Nearest Neighbors, Random Forest, and XGBoost and the standard SMAP SSS product, achieving a reduction of 36.0%, 33.4%, 40.1%, and 23.2%, respectively in root mean square error (RMSE). …”
Get full text
Article -
2514
Feasibility of Implementing Motion-Compensated Magnetic Resonance Imaging Reconstruction on Graphics Processing Units Using Compute Unified Device Architecture
Published 2025-05-01“…Motion correction in magnetic resonance imaging (MRI) has become increasingly complex due to the high computational demands of iterative reconstruction algorithms and the heterogeneity of emerging computing platforms. …”
Get full text
Article -
2515
An Adaptive Weight Physics-Informed Neural Network for Vortex-Induced Vibration Problems
Published 2025-05-01“…In this study, a VIV dataset of a cylindrical body with different degrees of freedom is used to compare the performance of the PINN and three PINN optimization algorithms. The findings suggest that, compared to a standard PINN, the AW-PINN lowers the mean squared error (MSE) on the test set by 50%, significantly improving the prediction accuracy. …”
Get full text
Article -
2516
Consensus recommendations for diagnosis and management of pulmonary arterial hypertension patients in Egypt
Published 2025-01-01“…This should be coupled with the development of screening algorithms tailored to the Egyptian setting. To develop such national screening algorithms, cost-effectiveness studies should be conducted in Egypt to better understand optimal screening frequency and the best use of algorithms. …”
Get full text
Article -
2517
Flexi-YOLO: A lightweight method for road crack detection in complex environments.
Published 2025-01-01“…Additionally, a lightweight network design is implemented, establishing G-Head (Ghost-Head) as the detection head to optimize the issue of feature redundancy. Experimental results show that Flexi-YOLO achieves an accuracy increase of 2.7% over YOLOv8n, a recall rate rise of 4.7%, a mAP improvement of 5.3%, a mAP@0.5-0.95 increase of 3.9%, a decrease of 0.5 in GFLOPS, and an F1 score improvement from 0.80 to 0.84. …”
Get full text
Article -
2518
Privacy-preserving federated learning framework with dynamic weight aggregation
Published 2022-10-01Get full text
Article -
2519
Knowledge Extraction via Machine Learning Guides a Topology‐Based Permeability Prediction Model
Published 2024-07-01“…The novel permeability prediction model incorporating topology feature improves the prediction accuracy and demonstrates strong applicability across diverse data sets. …”
Get full text
Article -
2520
Landslide Segmentation in High-Resolution Remote Sensing Images: The Van–UPerAttnSeg Framework with Multi-Scale Feature Enhancement
Published 2025-04-01“…In addition, this study introduces a sliding window algorithm based on Gaussian fusion as a post-processing method, which optimizes the prediction of landslide edge in high-resolution remote sensing images and ensures the context reasoning ability of the model. …”
Get full text
Article