Showing 2,161 - 2,180 results of 3,433 for search '(improved OR improve) ((cost OR most) OR post) optimization algorithm', query time: 0.32s Refine Results
  1. 2161

    FEATURES OF DIAGNOSTIC AND THERAPEUTIC TACTICS FOR BLUNT ABDOMINAL TRAUMA WITH DAMAGE TO THE PANCREAS by A. B. Singayevsky, S. G. Scherbak, B. V. Sigua, N. M. Vrublevsky, A. V. Nikiforenko, A. A. Kurkov, A. K. Dyukov

    Published 2017-03-01
    “…Injuries of pancreas in the closed abdominal trauma remain the one of most challenging issues in diagnosis and choice of optimal therapy.Objectives. …”
    Get full text
    Article
  2. 2162

    Synergistic Integration of LQR Control and PSO Optimization for Advanced Active Suspension Systems Utilizing Electro-Hydraulic Actuators and Electro-Servo Valves by Trong Tu

    Published 2025-06-01
    “…This research remarks the fundamentals of the experimental validation and further refinement of these control algorithms to adapt to various driving conditions and vehicle models, ultimately aiming to transition these optimized controllers from theoretical frameworks to practical, real-world applications. …”
    Get full text
    Article
  3. 2163
  4. 2164

    Weak Fault Detection for Rolling Bearings in Varying Working Conditions through the Second-Order Stochastic Resonance Method with Barrier Height Optimization by Huaitao Shi, Yangyang Li, Peng Zhou, Shenghao Tong, Liang Guo, Baicheng Li

    Published 2021-01-01
    “…In this paper, an underdamped second-order adaptive general variable-scale stochastic resonance (USAGVSR) method with potential well parameters’ optimization is put forward. For input signals with different fault frequencies, the potential well parameters related to the barrier height are figured out and optimized through the ant colony algorithm. …”
    Get full text
    Article
  5. 2165

    Optimal Allocation Strategy for Power Quality Control Devices Based on Harmonic and Three-Phase Unbalance Comprehensive Evaluation Indices for Distribution Network by Fang ZHUO, Zebin YANG, Hao YI, Guangyu YANG, Meng WANG, Xiaoqing YIN, Chengzhi ZHU

    Published 2020-11-01
    “…Secondly, taking the global configuration effects, the total number and capacity of control devices as the optimization goals, and regarding the harmonic distortions and unbalance degrees of the nodes satisfying the standard as the constraint condition, the optimal configuration node and capacity of each device is determined by multi-objective particle swarm algorithm. …”
    Get full text
    Article
  6. 2166
  7. 2167
  8. 2168

    A deep dive into artificial intelligence with enhanced optimization-based security breach detection in internet of health things enabled smart city environment by S Jayanthi, Sodagudi Suhasini, N. Sharmili, E. Laxmi Lydia, V. Shwetha, Bibhuti Bhusan Dash, Mrinal Bachute

    Published 2025-07-01
    “…For the selection of the feature process, the proposed SADDBN-AMOA model designs a slime mould optimization (SMO) model to select the most related features from the data. …”
    Get full text
    Article
  9. 2169

    Spatial Downscaling of TRMM Precipitation Data Using an Optimal Subset Regression Model with NDVI and Terrain Factors in the Yarlung Zangbo River Basin, China by Jinping Liu, Wanchang Zhang, Ning Nie

    Published 2018-01-01
    “…The objective of this study was to develop a reliable statistical downscaling algorithm to produce high quality, high spatial resolution precipitation products from Tropical Rainfall Monitoring Mission (TRMM) 3B43 data over the Yarlung Zangbo River Basin using an optimal subset regression (OSR) model combined with multiple topographical factors, the Normalized Difference Vegetation Index (NDVI), and observational data from rain gauge stations. …”
    Get full text
    Article
  10. 2170

    Multi-user joint task offloading and resource allocation based on mobile edge computing in mining scenarios by Siqi Li, Weidong Li, Wanbo Zheng, Yunni Xia, Kunyin Guo, Qinglan Peng, Xu Li, Jiaxin Ren

    Published 2025-05-01
    “…To evaluate the effectiveness of the proposed method, we compare it with five baseline algorithms: the improved grey wolf optimizer metaheuristic algorithm, the traditional genetic algorithm, the binary offloading decision mechanism, the partial non-cooperative mechanism, and the fully local execution mechanism. …”
    Get full text
    Article
  11. 2171
  12. 2172

    Short‐term electric power and energy balance optimization scheduling based on low‐carbon bilateral demand response mechanism from multiple perspectives by Juan Li, Yonggang Li, Huazhi Liu

    Published 2024-12-01
    “…The enhanced decision tree classifier (EDTC) algorithm is used to predict the electricity consumption behavior of transferable load (TL) users, and an improved particle swarm optimization (PSO) algorithm with “ε‐greedy” strategy is proposed to solve this model. …”
    Get full text
    Article
  13. 2173
  14. 2174
  15. 2175

    Hyperspectral Anomaly Detection by Spatial–Spectral Fusion Based on Extreme Value-Entropy Band Selection and Cauchy Graph Distance Optimization by Song Zhao, Yali Lv, Wen Zhang, Lijun Wang, Zhiru Yang, Gaofeng Ren, Bin Wang, Xiaobin Zhao, Tongwei Lu, Jiayao Wang, Wei Li

    Published 2025-01-01
    “…This algorithm combines spectral extremum detection with information entropy filtering to select the most representative bands by considering multidimensional information. …”
    Get full text
    Article
  16. 2176

    Accelerating Grover Adaptive Search: Qubit and Gate Count Reduction Strategies With Higher Order Formulations by Yuki Sano, Kosuke Mitarai, Naoki Yamamoto, Naoki Ishikawa

    Published 2024-01-01
    “…Grover adaptive search (GAS) is a quantum exhaustive search algorithm designed to solve binary optimization problems. …”
    Get full text
    Article
  17. 2177

    Estimating forest aboveground carbon sink based on landsat time series and its response to climate change by Kun Yang, Kai Luo, Jialong Zhang, Bo Qiu, Feiping Wang, Qinglin Xiao, Jun Cao, Yunrun He, Jian Yang

    Published 2025-01-01
    “…We found that (1) GA can effectively improve the estimation accuracy of RF, the R 2 can be improved by up to 34.8%, and the optimal GA-RF model R 2 is 0.83. (2) The CSI of Pinus densata in Shangri-La was 0.45–0.72 t C·hm− 2 from 1987 to 2017. (3) Precipitation has the most significant effect on CSI. …”
    Get full text
    Article
  18. 2178

    Sustainable Self-Training Pig Detection System with Augmented Single Labeled Target Data for Solving Domain Shift Problem by Junhee Lee, Heechan Chae, Seungwook Son, Jongwoong Seo, Yooil Suh, Jonguk Lee, Yongwha Chung, Daihee Park

    Published 2025-05-01
    “…Overcoming this limitation through large-scale labeling presents considerable burdens in terms of time and cost. To address the degradation issue, this study proposes a self-training-based domain adaptation method that utilizes a single label on target (SLOT) sample from the target domain, a genetic algorithm (GA)-based data augmentation search (DAS) designed explicitly for SLOT data to optimize the augmentation parameters, and a super-low-threshold strategy to include low-confidence-scored pseudo-labels during self-training. …”
    Get full text
    Article
  19. 2179

    A Multi-Objective Decision-Making Method for Optimal Scheduling Operating Points in Integrated Main-Distribution Networks with Static Security Region Constraints by Kang Xu, Zhaopeng Liu, Shuaihu Li

    Published 2025-07-01
    “…Subsequently, a scheduling optimization model is formulated to minimize both the system generation costs and the comprehensive risk, where the adaptive grid density-improved multi-objective particle swarm optimization (AG-MOPSO) algorithm is employed to efficiently generate Pareto-optimal operating point solutions. …”
    Get full text
    Article
  20. 2180

    Reconstruction of Highway Vehicle Paths Using a Two-Stage Model by Weifeng Yin, Junyong Zhai, Yongbo Yu

    Published 2025-02-01
    “…In the first stage, a Gaussian Mixture Model (GMM) is integrated into a path choice model to estimate the mean and standard deviation of travel times for each road segment, utilizing an improved Expectation Maximization (EM) algorithm. In the second stage, based on the estimated time parameters, path choice prior probabilities and observed data are combined using maximum likelihood estimation to infer the most probable paths among candidate routes. …”
    Get full text
    Article