-
641
Edge-Fog Computing-Based Blockchain for Networked Microgrid Frequency Support
Published 2025-01-01“…The parameters and hyperparameters of the LSTM-MFPC are optimized using the Bayesian Adaptive Direct Search (BADS) algorithm. …”
Get full text
Article -
642
Comparison of Machine Learning Methods for Predicting Electrical Energy Consumption
Published 2025-02-01“…Data pre-processing, specifically min-max normalization, is crucial for improving the accuracy of distance-based algorithms like KNN. …”
Get full text
Article -
643
Deep Mining on the Formation Cycle Features for Concurrent SOH Estimation and RUL Prognostication in Lithium-Ion Batteries
Published 2025-04-01“…Models that integrate all formation-related data yielded the lowest root mean square error (RMSE) of 2.928% for capacity estimation and 16 cycles for RUL prediction, highlighting the significant role of surface-level physical features in improving accuracy. …”
Get full text
Article -
644
Rapid Quality Assessment of Polygoni Multiflori Radix Based on Near-Infrared Spectroscopy
Published 2024-01-01“…After optimizing the model using CARS, R2C increased by 0.15%, 0.41%, and 0.34%, RMSECV decreased by 0.53%, 0.32%, and 0.24%, R2P increased by 0.21%, 0.63%, and 0.35%, RMSEP decreased by 0.36%, 0.41%, and 0.31%, and RPD increased by 1.1, 0.9, and 0.6, significantly improving the predictive capacity of the model. …”
Get full text
Article -
645
Prediction Model of Household Carbon Emission in Old Residential Areas in Drought and Cold Regions Based on Gene Expression Programming
Published 2025-07-01“…., electricity usage and heating energy consumption) were selected using Pearson correlation analysis and the Random Forest (RF) algorithm. Subsequently, a hybrid prediction model was constructed, with its parameters optimized by minimizing the root mean square error (RMSE) as the fitness function. …”
Get full text
Article -
646
Predicting hydrocarbon reservoir quality in deepwater sedimentary systems using sequential deep learning techniques
Published 2025-07-01“…Three sequential deep learning models—Recurrent Neural Network and Gated Recurrent Unit—were developed and optimized using the Adam algorithm. The Adam-LSTM model outperformed the others, achieving a Root Mean Square Error of 0.009 and a correlation coefficient (R2) of 0.9995, indicating excellent predictive performance. …”
Get full text
Article -
647
FedACT: An adaptive chained training approach for federated learning in computing power networks
Published 2024-12-01Get full text
Article -
648
Revisiting universal extra-dimension model with gravity mediated decays
Published 2025-04-01Get full text
Article -
649
Radiomic Features of Mesorectal Fat as Indicators of Response in Rectal Cancer Patients Undergoing Neoadjuvant Therapy
Published 2025-04-01“…The aim was to assess the potential presence of predictive factors for favorable or unfavorable responses to neoadjuvant chemoradiotherapy, thereby optimizing treatment management and improving personalized clinical decision-making. …”
Get full text
Article -
650
Predictive modelling of hexagonal boron nitride nanosheets yield through machine and deep learning: An ultrasonic exfoliation parametric evaluation
Published 2025-03-01“…A suite of machine learning regression models including Adaptive Boosting (AdaBoost) Regressor, Random Forest (RF) Regressor, Linear Regressor (LR), and Classification and Regression Tree (CART) Regressor, was employed alongside a deep neural network (DNN) architecture optimized using various algorithms such as Adaptive Moment Estimation (Adam), Root Mean Square Propagation (RMS Prop), Stochastic Gradient Descent (SGD), and Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS). …”
Get full text
Article -
651
Incidence, Pathogenesis, Risk Factors, and Treatment of Cystoid Macula Oedema Following Cataract Surgery: A Systematic Review
Published 2025-03-01“…Further research is needed to establish optimal treatment algorithms and improve outcomes for patients with post-operative CMO…”
Get full text
Article -
652
Wideband Beam-Steering Flat Dielectric Lens Antenna for 5G Communications
Published 2025-01-01“…The overall radiation performance of the antenna versus the feed network positions along the focal length of the FDL is precisely optimized through the use of the ray-tracing technique and genetic algorithm. …”
Get full text
Article -
653
IHML: Incremental Heuristic Meta-Learner
Published 2024-12-01“…Existing work in this context utilizes XAI mostly in pre-processing the data or post-analysis of the results, however, IHML incorporates XAI into the learning process in an iterative manner and improves the prediction performance of the meta-learner. …”
Get full text
Article -
654
Multi-Fidelity Machine Learning for Identifying Thermal Insulation Integrity of Liquefied Natural Gas Storage Tanks
Published 2024-12-01“…The results of the data experiments demonstrate that the multi-fidelity framework outperforms models trained solely on low- or high-fidelity data, achieving a coefficient of determination of 0.980 and a root mean square error of 0.078 m. Three machine learning algorithms—Multilayer Perceptron, Random Forest, and Extreme Gradient Boosting—were evaluated to determine the optimal implementation. …”
Get full text
Article -
655
Predicting hospital outpatient volume using XGBoost: a machine learning approach
Published 2025-05-01“…Accurate prediction of outpatient demand can significantly enhance operational efficiency and optimize the allocation of medical resources. This study aims to develop a predictive model for daily hospital outpatient volume using the XGBoost algorithm. …”
Get full text
Article -
656
Calibration of the Composition of Low-Alloy Steels by the Interval Partial Least Squares Using Low-Resolution Emission Spectra with Baseline Correction
Published 2024-04-01“…Further improvement of calibration accuracy was achieved by using the adaptive iteratively reweighted penalized least squares algorithm for spectrum baseline correction. …”
Get full text
Article -
657
Predicting postoperative nausea and vomiting using machine learning: a model development and validation study
Published 2025-03-01“…Conclusions The machine learning-based models developed in this study enabled improved PONV prediction, thereby facilitating personalized care and improved patient outcomes.…”
Get full text
Article -
658
Development of Advanced Machine Learning Models for Predicting CO<sub>2</sub> Solubility in Brine
Published 2025-02-01“…The results underscore the potential of ML models to significantly enhance prediction accuracy over a wide data range, reduce computational costs, and improve the efficiency of CCUS operations. This work demonstrates the robustness and adaptability of ML approaches for modeling complex subsurface conditions, paving the way for optimized carbon sequestration strategies.…”
Get full text
Article -
659
-
660
IMAGE SEGMENTATION AND OBJECT SELECTION BASED ON MULTI-THRESHOLD PROCESSING
Published 2019-07-01“…The main advantage of the proposed approach consists in the minimisation of the post-processing shape modification of the selected objects. …”
Get full text
Article