Search alternatives:
coot » cost (Expand Search)
post » most (Expand Search)
Showing 241 - 260 results of 346 for search '(improved OR improve) ((coot OR post) OR root) optimization algorithm', query time: 0.13s Refine Results
  1. 241

    Enhancing 4G/LTE Network Path Loss Prediction with PSO-GWO Hybrid Approach by Messaoud Garah, Nabil Boukhennoufa

    Published 2025-07-01
    “…Furthermore, a hybrid optimization model, PSO-GWO, is proposed to improve prediction accuracy. …”
    Get full text
    Article
  2. 242

    Apple Trajectory Prediction in Orchards: A YOLOv8-EK-IPF Approach by Jinxing Niu, Zhengyi Liu, Shuo Wang, Jiaxi Huang, Junlong Zhao

    Published 2025-05-01
    “…To address the challenge of accurate apple harvesting by orchard robots, which is hindered by dynamic changes in apple position due to wind interference and branch swaying, this study proposes an optimized prediction algorithm based on an integration of the extended Kalman filter (EKF) and an improved particle filter (IPF), built upon initial apple detection and recognition using YOLOv8. …”
    Get full text
    Article
  3. 243
  4. 244

    Predictive modeling of hydrogen production and methane conversion from biomass-derived methane using machine learning and optimisation techniques by Adegboyega Bolu Ehinmowo, Bright Ikechukwu Nwaneri, Joseph Oluwatobi Olaide

    Published 2025-04-01
    “…However, there is the need to optimise this process for better efficiency and improved hydrogen production from biomass sources. …”
    Get full text
    Article
  5. 245

    Mortality prediction of heart transplantation using machine learning models: a systematic review and meta-analysis by Ida Mohammadi, Setayesh Farahani, Asal Karimi, Saina Jahanian, Shahryar Rajai Firouzabadi, Mohammadreza Alinejadfard, Alireza Fatemi, Bardia Hajikarimloo, Mohammadhosein Akhlaghpasand

    Published 2025-04-01
    “…IntroductionMachine learning (ML) models have been increasingly applied to predict post-heart transplantation (HT) mortality, aiming to improve decision-making and optimize outcomes. …”
    Get full text
    Article
  6. 246

    Statistics and behavior of clinically significant extra-pulmonary vein atrial fibrillation sources: machine-learning-enhanced electrographic flow mapping in persistent atrial fibri... by Peter Ruppersberg, Steven Castellano, Philip Haeusser, Kostiantyn Ahapov, Melissa H. Kong, Stefan G. Spitzer, Stefan G. Spitzer, Georg Nölker, Andreas Rillig, Tamas Szili-Torok

    Published 2025-08-01
    “…These findings, supported by the FLOW-AF trial, underscore the usefulness of clinical outcome-based machine learning to improve the efficacy of algorithm based medical diagnostics.…”
    Get full text
    Article
  7. 247
  8. 248

    Physically-constrained evapotranspiration models with machine learning parameterization outperform pure machine learning: Critical role of domain knowledge. by Yeonuk Kim, Monica Garcia, T Andrew Black, Mark S Johnson

    Published 2025-01-01
    “…We found a strong correlation (r = 0.93) between the sensitivity of ET estimates to machine-learned parameters and model error (root-mean-square error; RMSE), indicating that reduced sensitivity minimizes error propagation and improves performance. …”
    Get full text
    Article
  9. 249

    An Adaptive Unscented Kalman Ilter Integrated Navigation Method Based on the Maximum Versoria Criterion for INS/GNSS Systems by Jiahao Zhang, Kaiqiang Feng, Jie Li, Chunxing Zhang, Xiaokai Wei

    Published 2025-05-01
    “…On this basis, fully considering the high-order moments of estimation errors, the maximum versoria criterion is introduced as the optimization criterion to construct a novel cost function, further effectively suppressing deviations caused by non-Gaussian disturbances and improving system navigation accuracy. …”
    Get full text
    Article
  10. 250

    Hybrid modeling of adsorption process using mass transfer and machine learning techniques for concentration prediction by Jing Lv, Lei Wang

    Published 2025-07-01
    “…Prior to model training, the dataset underwent rigorous preprocessing including outlier removal using the z-score method and normalization. To improve model performance, hyperparameters were optimized using the bio-inspired Barnacles Mating Optimizer (BMO) algorithm. …”
    Get full text
    Article
  11. 251

    Computational intelligence investigations on evaluation of salicylic acid solubility in various solvents at different temperatures by Adel Alhowyan, Wael A. Mahdi, Ahmad J. Obaidullah

    Published 2025-02-01
    “…The dataset was preprocessed using the Standard Scaler to standardize it, ensuring each feature has a mean of zero and a standard deviation of one, followed by outlier detection with Cook’s distance. Hyperparameter optimization made using the Differential Evolution (DE) method improved the performance of models. …”
    Get full text
    Article
  12. 252

    Inversion model of stress state reconstruction for geological hazard pipelines based on digital twin by Xue Luning, Tian Mingliang, Zhao Juncheng

    Published 2025-07-01
    “…The mechanical state of the physical pipeline is mapped in real time by the digital twin, the numerical simulation and multi-source monitoring data are integrated, and the parameters of the twin model are dynamically optimized by combining the optimization algorithms of Particle Swarm Optimization (PSO) and Support Vector Machine (SVM), so as to realize the real-time prediction of the pipeline stress state and the dynamic updating of the disaster scenario. …”
    Get full text
    Article
  13. 253
  14. 254

    Driving Pattern Analysis, Gear Shift Classification, and Fuel Efficiency in Light-Duty Vehicles: A Machine Learning Approach Using GPS and OBD II PID Signals by Juan José Molina-Campoverde, Juan Zurita-Jara, Paúl Molina-Campoverde

    Published 2025-06-01
    “…Such integration could optimize gear shift timing based on dynamic factors like road conditions, traffic density, and driver behavior, ultimately contributing to improved fuel efficiency and overall vehicle performance.…”
    Get full text
    Article
  15. 255

    A Deep Learning Method for Photovoltaic Power Generation Forecasting Based on a Time-Series Dense Encoder by Xingfa Zi, Feiyi Liu, Mingyang Liu, Yang Wang

    Published 2025-05-01
    “…Deep learning has become a widely used approach in photovoltaic (PV) power generation forecasting due to its strong self-learning and parameter optimization capabilities. In this study, we apply a deep learning algorithm, known as the time-series dense encoder (TiDE), which is an MLP-based encoder–decoder model, to forecast PV power generation. …”
    Get full text
    Article
  16. 256

    Analytical framework for household energy management: integrated photovoltaic generation and load forecasting mechanisms by Zhenping Xie, Yansha Li

    Published 2025-07-01
    “…The KNN-GA-MBP algorithm demonstrates the best prediction performance among the three algorithms, with an RMSE of only 0.39 kW, this represents a 43.37% improvement in RMSE over the KNN-MBP algorithm and a 71.89% improvement over the MBP algorithm.…”
    Get full text
    Article
  17. 257

    A Dynamic Kalman Filtering Method for Multi-Object Fruit Tracking and Counting in Complex Orchards by Yaning Zhai, Ling Zhang, Xin Hu, Fanghu Yang, Yang Huang

    Published 2025-07-01
    “…To address these challenges, this paper proposes a multi-object fruit tracking and counting method, which integrates an improved YOLO-based object detection algorithm with a dynamically optimized Kalman filter. …”
    Get full text
    Article
  18. 258

    The effect of implementing parenteral nutrition guideline on growth and clinical outcomes in preterm infants: a comparative study by Majid Mahallei, Lida Gorbani, Mohammad Bagher Hoseini, Elnaz Shaseb, Bahareh Mehramuz, Khatereh Rezazadeh

    Published 2025-05-01
    “…The PRE group received individualized PN formulations based on clinician discretion, while the POST group received PN guided by a newly introduced, stepwise algorithmic protocol aiming to optimize early protein and energy intake. …”
    Get full text
    Article
  19. 259

    Theoretical analysis of MOFs for pharmaceutical applications by using machine learning models to predict loading capacity and cell viability by Bader Huwaimel, Saad Alqarni

    Published 2025-08-01
    “…Principal Component Analysis (PCA) was applied to reduce dimensionality, and the Water Cycle Algorithm was used to optimize hyperparameters. Evaluation metrics, including R2, Root Mean Squared Error (RMSE), and maximum error, indicated that the QR-MLP model outperformed the other models, achieving test R2 scores of 0.99917 for Drug Loading Capacity and 0.99111 for Cell Viability. …”
    Get full text
    Article
  20. 260

    P-Band PolInSAR Sub-Canopy Terrain Retrieval in Tropical Forests Using Forest Height-to-Unpenetrated Depth Mapping by Chuanjun Wu, Jiali Hou, Peng Shen, Sai Wang, Gang Chen, Lu Zhang

    Published 2025-06-01
    “…A nonlinear iterative optimization algorithm is then employed to estimate forest height, from which a fundamental mapping between forest height and unpenetrated depth is established. …”
    Get full text
    Article