Search alternatives:
"the reduction value" » "the education value" (Expand Search)
Showing 2,461 - 2,480 results of 2,901 for search '(((("the predictive value") OR ("the prediction value"))) OR ("the reduction value"))', query time: 0.26s Refine Results
  1. 2461

    Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning‐enabled molecular diagnostics by Ariane Khaledi, Aaron Weimann, Monika Schniederjans, Ehsaneddin Asgari, Tzu‐Hao Kuo, Antonio Oliver, Gabriel Cabot, Axel Kola, Petra Gastmeier, Michael Hogardt, Daniel Jonas, Mohammad RK Mofrad, Andreas Bremges, Alice C McHardy, Susanne Häussler

    Published 2020-02-01
    “…Using these data types alone or in combination resulted in high (0.8–0.9) or very high (> 0.9) sensitivity and predictive values. For all drugs except for ciprofloxacin, gene expression information improved diagnostic performance. …”
    Get full text
    Article
  2. 2462

    Enhancing wearable sensor data analysis for patient health monitoring using allied data disparity technique and multi instance ensemble perceptron learning by Mohd Anjum, Waseem Ahmad, Sana Shahab, Ashit Kumar Dutta, Ali Elrashidi, Amr Yousef, Zaffar Ahmed Shaikh

    Published 2025-08-01
    “…This decision uses multiple substituted and predicted values obtained from previous instances. Multi-Instance Ensemble Perceptron Learning is used in this decision process, where the substitution instances for clinical and previous outcomes are performed. …”
    Get full text
    Article
  3. 2463

    Machine Learning Analysis of Umbilic Defect Annihilation in Nematic Liquid Crystals in the Presence of Nanoparticles by Ingo Dierking, Adam Moyle, Gabriele Maria Cepparulo, Katherine Skingle, Laura Hernández, Juhan Raidal

    Published 2025-02-01
    “…It is observed that the defect annihilation scaling exponents deviate from the theoretically predicted value of α = 1/2 when nanoparticles of varying size and concentration are introduced to the system. …”
    Get full text
    Article
  4. 2464

    A new model for predicting characteristics of the near-field leakage in high-pressure CO2 pipelines by Yan Shang, Xiaoling Chen, Peilu Wu, Zhanjie Li, Ming Yang, Xiaokai Xing, Jian Jiao, Xinze Li

    Published 2025-06-01
    “…A comparison of the predicted values with experimental data shows that these formulas can accurately predict the characteristic dimensions of the normal shock wave, with a maximum error rate of 5.5%.…”
    Get full text
    Article
  5. 2465

    Adaptive torque feed-forward control for wind turbine MPPT considering predicted wind speed characteristics by Liangwen Qi, Min Zhao, Songsong Wu, Xiaohan Zhang, Pengfei Meng, Yong Zhao, Wei Deng

    Published 2025-06-01
    “…A single exponential smoothing method predicts future mean wind speed and equivalent turbulence frequency. These predicted values adaptively schedule the feed-forward gain, enabling bandwidth adaptation without altering steady-state equilibrium. …”
    Get full text
    Article
  6. 2466

    Control of Rock Block Fragmentation Based on the Optimization of Shaft Blasting Parameters by Qingxiang Li, Zhanyou Luo, Man Huang, Jiangbo Pan, Guoshu Wang, Yunxin Cheng

    Published 2020-01-01
    “…The average absolute errors between the predicted value and the actual value of the largest block size control model of the shaft blasting are only 2.6%. …”
    Get full text
    Article
  7. 2467

    A combined model for short-term traffic flow prediction based on variational modal decomposition and deep learning by Chuanxiang Ren, Fangfang Fu, Changchang Yin, Li Lu, Lin Cheng

    Published 2025-05-01
    “…In the VMD-GAT-MGTCN, VMD decomposes traffic flow data to obtain the modal components, the GAT and MGTCN are integrated to design the spatio-temporal feature model to obtain the temporal and spatial features of traffic flow. The predicted value of traffic flow modal components by spatio-temporal feature model are stacked to obtain the ultimate traffic flow prediction results. …”
    Get full text
    Article
  8. 2468

    Short-term forecast of wind power based on the division of wind speed fluctuation characteristics by QIAO Titang, XIE Lirong, YE Jiahao, GAO Yang, DAI Bing

    Published 2025-05-01
    “…The dynamic time warping algorithm is used to mine the fluctuating wind similar data in the historical data, and a training sample data set is constructed combining with the corresponding historical wind power; a hunger game search algorithm is used to optimize the hyperparameters of the gated recurrent unit neural network, and a combined prediction model for three fluctuation stages is established. The wind power prediction values of different wind speed fluctuation processes are recombined in time series to obtain short-term wind power prediction results. …”
    Get full text
    Article
  9. 2469

    “CVCACS” MODEL FOR PREDICTION OF CARDIOVASCULAR COMPLICATIONS IN HOSPITALIZED PATIENTS WITH ACUTE CORONARY SYNDROME by E. T. Manyukova, M. A. Shalenkova, Z. D. Mikhailova

    Published 2015-03-01
    “…In order to facilitate the prediction values of CVC during ACS hospital period we have proposed a “CVCACS” model that employed the parameters of patient’s age, IL-10 level in the saliva, IL-6, and hs-CRP amounts in blood. …”
    Get full text
    Article
  10. 2470
  11. 2471

    Observation of ψ(3686) → Ξ − K S 0 Ω ¯ + $$ {\Xi}^{-}{K}_S^0{\overline{\varOmega}}^{+} $$ + c.c. by The BESIII collaboration, M. Ablikim, M. N. Achasov, P. Adlarson, X. C. Ai, R. Aliberti, A. Amoroso, Q. An, Y. Bai, O. Bakina, Y. Ban, H.-R. Bao, V. Batozskaya, K. Begzsuren, N. Berger, M. Berlowski, M. Bertani, D. Bettoni, F. Bianchi, E. Bianco, A. Bortone, I. Boyko, R. A. Briere, A. Brueggemann, H. Cai, M. H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, X. Y. Chai, J. F. Chang, G. R. Che, Y. Z. Che, G. Chelkov, C. Chen, C. H. Chen, Chao Chen, G. Chen, H. S. Chen, H. Y. Chen, M. L. Chen, S. J. Chen, S. L. Chen, S. M. Chen, T. Chen, X. R. Chen, X. T. Chen, Y. B. Chen, Y. Q. Chen, Z. J. Chen, Z. K. Chen, S. K. Choi, X. Chu, G. Cibinetto, F. Cossio, J. J. Cui, H. L. Dai, J. P. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, C. Q. Deng, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, B. Ding, X. X. Ding, Y. Ding, Y. Ding, Y. X. Ding, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, M. C. Du, S. X. Du, Y. Y. Duan, Z. H. Duan, P. Egorov, G. F. Fan, J. J. Fan, Y. H. Fan, J. Fang, J. Fang, S. S. Fang, W. X. Fang, Y. Q. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, Y. T. Feng, M. Fritsch, C. D. Fu, J. L. Fu, Y. W. Fu, H. Gao, X. B. Gao, Y. N. Gao, Y. N. Gao, Y. Y. Gao, Yang Gao, S. Garbolino, I. Garzia, P. T. Ge, Z. W. Ge, C. Geng, E. M. Gersabeck, A. Gilman, K. Goetzen, J. D. Gong, L. Gong, W. X. Gong, W. Gradl, S. Gramigna, M. Greco, M. H. Gu, Y. T. Gu, C. Y. Guan, A. Q. Guo, L. B. Guo, M. J. Guo, R. P. Guo, Y. P. Guo, A. Guskov, J. Gutierrez, K. L. Han, T. T. Han, F. Hanisch, K. D. Hao, X. Q. Hao, F. A. Harris, K. K. He, K. L. He, F. H. Heinsius, C. H. Heinz, Y. K. Heng, C. Herold, T. Holtmann, P. C. Hong, G. Y. Hou, X. T. Hou, Y. R. Hou, Z. L. Hou, B. Y. Hu, H. M. Hu, J. F. Hu, Q. P. Hu, S. L. Hu, T. Hu, Y. Hu, Z. M. Hu, G. S. Huang, K. X. Huang, L. Q. Huang, P. Huang, X. T. Huang, Y. P. Huang, Y. S. Huang, T. Hussain, N. Hüsken, N. in der Wiesche, J. Jackson, S. Janchiv, Q. Ji, Q. P. Ji, W. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, Z. K. Jia, D. Jiang, H. B. Jiang, P. C. Jiang, S. J. Jiang, T. J. Jiang, X. S. Jiang, Y. Jiang, J. B. Jiao, J. K. Jiao, Z. Jiao, S. Jin, Y. Jin, M. Q. Jing, X. M. Jing, T. Johansson, S. Kabana, N. Kalantar-Nayestanaki, X. L. Kang, X. S. Kang, M. Kavatsyuk, B. C. Ke, V. Khachatryan, A. Khoukaz, R. Kiuchi, O. B. Kolcu, B. Kopf, M. Kuessner, X. Kui, N. Kumar, A. Kupsc, W. Kühn, Q. Lan, W. N. Lan, T. T. Lei, M. Lellmann, T. Lenz, C. Li, C. Li, C. H. Li, C. K. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. B. Li, H. J. Li, H. N. Li, Hui Li, J. R. Li, J. S. Li, K. Li, K. L. Li, K. L. Li, L. J. Li, Lei Li, M. H. Li, M. R. Li, P. L. Li, P. R. Li, Q. M. Li, Q. X. Li, R. Li, T. Li, T. Y. Li, W. D. Li, W. G. Li, X. Li, X. H. Li, X. L. Li, X. Y. Li, X. Z. Li, Y. Li, Y. G. Li, Y. P. Li, Z. J. Li, Z. Y. Li, C. Liang, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. B. Liao, M. H. Liao, Y. P. Liao, J. Libby, A. Limphirat, C. C. Lin, C. X. Lin, D. X. Lin, L. Q. Lin, T. Lin, B. J. Liu, B. X. Liu, C. Liu, C. X. Liu, F. Liu, F. H. Liu, Feng Liu, G. M. Liu, H. Liu, H. B. Liu, H. H. Liu, H. M. Liu, Huihui Liu, J. B. Liu, J. J. Liu, K. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, L. C. Liu, Lu Liu, P. L. Liu, Q. Liu, S. B. Liu, T. Liu, W. K. Liu, W. M. Liu, W. T. Liu, X. Liu, X. Liu, X. Y. Liu, Y. Liu, Y. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Z. D. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. G. Lu, Y. Lu, Y. H. Lu, Y. P. Lu, Z. H. Lu, C. L. Luo, J. R. Luo, J. S. Luo, M. X. Luo, T. Luo, X. L. Luo, Z. Y. Lv, X. R. Lyu, Y. F. Lyu, Y. H. Lyu, F. C. Ma, H. Ma, H. L. Ma, J. L. Ma, L. L. Ma, L. R. Ma, Q. M. Ma, R. Q. Ma, R. Y. Ma, T. Ma, X. T. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, I. MacKay, M. Maggiora, S. Malde, Y. J. Mao, Z. P. Mao, S. Marcello, F. M. Melendi, Y. H. Meng, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, H. Miao, T. J. Min, R. E. Mitchell, X. H. Mo, B. Moses, N. Yu. Muchnoi, J. Muskalla, Y. Nefedov, F. Nerling, L. S. Nie, I. B. Nikolaev, Z. Ning, S. Nisar, Q. L. Niu, W. D. Niu, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, Y. P. Pei, M. Pelizaeus, H. P. Peng, Y. Y. Peng, K. Peters, J. L. Ping, R. G. Ping, S. Plura, V. Prasad, F. Z. Qi, H. R. Qi, M. Qi, S. Qian, W. B. Qian, C. F. Qiao, J. H. Qiao, J. J. Qin, J. L. Qin, L. Q. Qin, L. Y. Qin, P. B. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, Z. H. Qu, C. F. Redmer, A. Rivetti, M. Rolo, G. Rong, S. S. Rong, F. Rosini, Ch. Rosner, M. Q. Ruan, S. N. Ruan, N. Salone, A. Sarantsev, Y. Schelhaas, K. Schoenning, M. Scodeggio, K. Y. Shan, W. Shan, X. Y. Shan, Z. J. Shang, J. F. Shangguan, L. G. Shao, M. Shao, C. P. Shen, H. F. Shen, W. H. Shen, X. Y. Shen, B. A. Shi, H. Shi, J. L. Shi, J. Y. Shi, S. Y. Shi, X. Shi, H. L. Song, J. J. Song, T. Z. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, F. Stieler, S. S Su, Y. J. Su, G. B. Sun, G. X. Sun, H. Sun, H. K. Sun, J. F. Sun, K. Sun, L. Sun, S. S. Sun, T. Sun, Y. C. Sun, Y. H. Sun, Y. J. Sun, Y. Z. Sun, Z. Q. Sun, Z. T. Sun, C. J. Tang, G. Y. Tang, J. Tang, L. F. Tang, M. Tang, Y. A. Tang, L. Y. Tao, M. Tat, J. X. Teng, J. Y. Tian, W. H. Tian, Y. Tian, Z. F. Tian, I. Uman, B. Wang, B. Wang, Bo Wang, C. Wang, Cong Wang, D. Y. Wang, H. J. Wang, J. J. Wang, K. Wang, L. L. Wang, L. W. Wang, M. Wang, M. Wang, N. Y. Wang, S. Wang, T. Wang, T. J. Wang, W. Wang, W. Wang, W. P. Wang, X. Wang, X. F. Wang, X. J. Wang, X. L. Wang, X. N. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. H. Wang, Y. L. Wang, Y. N. Wang, Y. Q. Wang, Yaqian Wang, Yi Wang, Yuan Wang, Z. Wang, Z. L. Wang, Z. L. Wang, Z. Q. Wang, Z. Y. Wang, D. H. Wei, H. R. Wei, F. Weidner, S. P. Wen, Y. R. Wen, U. Wiedner, G. Wilkinson, M. Wolke, C. Wu, J. F. Wu, L. H. Wu, L. J. Wu, Lianjie Wu, S. G. Wu, S. M. Wu, X. Wu, X. H. Wu, Y. J. Wu, Z. Wu, L. Xia, X. M. Xian, B. H. Xiang, T. Xiang, D. Xiao, G. Y. Xiao, H. Xiao, Y. L. Xiao, Z. J. Xiao, C. Xie, K. J. Xie, X. H. Xie, Y. Xie, Y. G. Xie, Y. H. Xie, Z. P. Xie, T. Y. Xing, C. F. Xu, C. J. Xu, G. F. Xu, H. Y. Xu, H. Y. Xu, M. Xu, Q. J. Xu, Q. N. Xu, W. L. Xu, X. P. Xu, Y. Xu, Y. Xu, Y. C. Xu, Z. S. Xu, H. Y. Yan, L. Yan, W. B. Yan, W. C. Yan, W. P. Yan, X. Q. Yan, H. J. Yang, H. L. Yang, H. X. Yang, J. H. Yang, R. J. Yang, T. Yang, Y. Yang, Y. F. Yang, Y. H. Yang, Y. Q. Yang, Y. X. Yang, Y. Z. Yang, M. Ye, M. H. Ye, Junhao Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, M. C. Yu, T. Yu, X. D. Yu, Y. C. Yu, C. Z. Yuan, H. Yuan, J. Yuan, J. Yuan, L. Yuan, S. C. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, Ying Yue, A. A. Zafar, S. H. Zeng, X. Zeng, Y. Zeng, Y. J. Zeng, Y. J. Zeng, X. Y. Zhai, Y. H. Zhan, A. Q. Zhang, B. L. Zhang, B. X. Zhang, D. H. Zhang, G. Y. Zhang, G. Y. Zhang, H. Zhang, H. Zhang, H. C. Zhang, H. H. Zhang, H. Q. Zhang, H. R. Zhang, H. Y. Zhang, J. Zhang, J. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. S. Zhang, J. W. Zhang, J. X. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, L. M. Zhang, Lei Zhang, N. Zhang, P. Zhang, Q. Zhang, Q. Y. Zhang, R. Y. Zhang, S. H. Zhang, Shulei Zhang, X. M. Zhang, X. Y Zhang, X. Y. Zhang, Y. Zhang, Y. Zhang, Y. T. Zhang, Y. H. Zhang, Y. M. Zhang, Z. D. Zhang, Z. H. Zhang, Z. L. Zhang, Z. L. Zhang, Z. X. Zhang, Z. Y. Zhang, Z. Y. Zhang, Z. Z. Zhang, Zh. Zh. Zhang, G. Zhao, J. Y. Zhao, J. Z. Zhao, L. Zhao, Lei Zhao, M. G. Zhao, N. Zhao, R. P. Zhao, S. J. Zhao, Y. B. Zhao, Y. L. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, B. M. Zheng, J. P. Zheng, W. J. Zheng, X. R. Zheng, Y. H. Zheng, B. Zhong, X. Zhong, H. Zhou, J. Q. Zhou, J. Y. Zhou, S. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, Y. Z. Zhou, Z. C. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, K. S. Zhu, L. Zhu, L. X. Zhu, S. H. Zhu, T. J. Zhu, W. D. Zhu, W. D. Zhu, W. J. Zhu, W. Z. Zhu, Y. C. Zhu, Z. A. Zhu, X. Y. Zhuang, J. H. Zou, J. Zu

    Published 2025-06-01
    “…The ratio between B ψ 3686 → Ξ − K S 0 Ω ¯ + + c . c $$ {\mathcal{B}}_{\psi (3686)\to {\varXi}^{-}{K}_S^0{\overline{\varOmega}}^{+}+c.c} $$ and B ψ 3686 → Ω − K + Ξ ¯ 0 + c . c $$ {\mathcal{B}}_{\psi (3686)\to {\varOmega}^{-}{K}^{+}{\overline{\Xi}}^0+c.c} $$ is determined to be 1.05 ± 0.23 ± 0.14, which deviates from the isospin symmetry conservation predicted value of 0.5 by 2.1σ.…”
    Get full text
    Article
  12. 2472
  13. 2473

    Prognostic Value of Transcranial Doppler in the Survival of Patients with Spontaneous Cerebral Intraparenchymal Hemorrhage by Julio López Argüelles, Erélido Hernández Valero

    Published 2019-12-01
    “…The values of transcranial doppler were found their predictive values. <br /><strong>Results:</strong> a significant association was obtained among hematoma volume, transcranial doppler values and electrocardiogram with survival. …”
    Get full text
    Article
  14. 2474

    Improve the Intelligent Convenience of Multivariate Optimization of Concrete Mix Ratio and the Development of Corresponding Applications by Zhanfei Yang, Bin Chen, Jianfen Zhou, Saihua Huang

    Published 2024-01-01
    “…The prediction and actual error of 7-day intensity and 28-day intensity are −14.4% to −6.1% and −17.6% to 0.6%, respectively, while the predicted value and actual slump error are 15%. The results show that the error between the measured value and the design value is basically within 15%, which meets the design requirements. …”
    Get full text
    Article
  15. 2475

    Prediction of Influence of Environmental Factors on the Toxicity of Pentachlorophenol on <i>E. coli</i>-Based Bioassays by Sulivan Jouanneau, Gerald Thouand

    Published 2025-05-01
    “…This model was validated using a validation dataset and demonstrated a strong correlation between the experimental and predicted values (r<sup>2</sup> ≈ 0.9). Thus, this approach enables the effective prediction of PCP’s effects by accounting for environmental variations. …”
    Get full text
    Article
  16. 2476

    Are NLR Rate and MPV Values Useful in Predicting Malignancy in Follicular Neoplasia, Atypia of Undetermined Significance and Suspicious Cytology? by Murat Doğan, Aykut Soyder

    Published 2020-04-01
    “…The aim of this study was to investigate the predictive values of these two parameters in detecting thyroid malignancy.Materials and Methods:Patients who were reported to have atypia of undetermined significance, follicular neoplasia and suspected cytology as a result of thyroid fine needle aspiration biopsy (FNAB) in a tertiary health care facility between January 2010 and December 2017 and who had undergone total thyroidectomy or hemithyroidectomy due to this were evaluated. …”
    Get full text
    Article
  17. 2477

    Use of the Children’s Observation and Severity Tool (COAST), an Adaptation of the Paediatric Early Warning Score, in the Emergency Department as a Predictor for Hospital Admission:... by James Truell, Sara Neville-Smith, Hayley Hutton

    Published 2025-01-01
    “…Results: Results demonstrated that high COAST scores on arrival are strongly correlated with hospital admission, with positive predictive values of 59.52% with COAST of ≥3 and 100% for with score threshold of ≥5. …”
    Get full text
    Article
  18. 2478

    Methods of creating and using a digital twin of a mobile transport and transshipment rope complex by I. A. Lagerev, V. I. Tarichko, A. V. Panfilov

    Published 2020-10-01
    “…To do this, the actual value of the load suspension point coordinate obtained through the video stream processing method was compared to the predicted value calculated using a digital twin.Discussion and Conclusions. …”
    Get full text
    Article
  19. 2479

    Comprehensive comparison between artificial intelligence and multiple regression: prediction of Palmerston North’s temperature by M. Y. Tufail, S. Gul

    Published 2025-07-01
    “…To evaluate the performance of these models, we analysed the errors between the true values and the predicted values for the study dataset, which included the mean squared error (0.00016, 0.00016, & 0.00012, respectively) and the modeling efficiency (0.9883, 0.9988, & 0.9991, respectively), among others. …”
    Get full text
    Article
  20. 2480

    R Analysis for Optimizing Enzymatic Saccharification of Watermelon (<i>Citrullus lanatus</i>) Rind by Wan Zafira Ezza Wan Zakaria, Khairunisa Yusof, Noor Aziah Serri

    Published 2025-01-01
    “…The presented mathematical model exhibited a strong correlation between actual and predicted values, with a predicted R<sup>2</sup> value of 0.96%. …”
    Get full text
    Article