Search alternatives:
"the prediction value" » "the reduction value" (Expand Search)
Showing 941 - 960 results of 1,109 for search '(("the predictive value") OR ("the prediction value"))', query time: 0.12s Refine Results
  1. 941

    LSTM-conformal forecasting-based bitcoin forecasting method for enhancing reliability. by Xiangyue Zhang, Yuyun Kang, Chao Li, Wenjing Wang, Keqing Wang

    Published 2025-01-01
    “…Subsequently, an LSTM model is built, and data are fed into it and the data is used to train the model to generate predictions. Finally, the predicted values generated by the LSTM are fed into the conformal prediction model, and confidence intervals for these values are generated to verify their reliability. …”
    Get full text
    Article
  2. 942

    Model-output-based federated Bayesian optimization by Lin Yang, Qiqi Liu, Zhigang Zhao, Yunhe Wang, Junhua Gu

    Published 2025-07-01
    “…In this work, we propose an innovative FBO method that suggests transmitting the predicted values of surrogate models between the agent and the server and aggregating the weighted model output based on the similarity of the agent to address privacy concerns. …”
    Get full text
    Article
  3. 943

    Establishment of Rutting Model of Wheel-Tracking Test for Real-Time Prediction of Rut Depth of Asphalt Layers by Yulong Zhao, Ying Gao, Ke Zhang, Yao Zhang, Mingce Yu

    Published 2021-01-01
    “…The order of importance of the factors affecting the high-temperature performance of asphalt mixture is the gradation of asphalt mixture, asphalt-aggregate ratio, and molding temperature. Overall, the predicted values of the rut depth of the wheel-tracking test are very close to the measured values. …”
    Get full text
    Article
  4. 944

    In Search of an Accurate Evaluation of Intrahepatic Cholestasis of Pregnancy by Manuela Martinefski, Mario Contin, Silvia Lucangioli, Maria Beatriz Di Carlo, Valeria Tripodi

    Published 2012-01-01
    “…Serum bile acid profiles were evaluated using capillary electrophoresis in 38 healthy pregnant women and 32 ICP patients and it was calculated the sensitivity, specificity, accuracy, predictive values and the relationships of certain individual bile acids in pregnant women in order to replace TSBA determinations. …”
    Get full text
    Article
  5. 945

    Robustness of machine learning predictions for Fe-Co-Ni alloys prepared by various synthesis methods by Shakti P. Padhy, Soumya R. Mishra, Li Ping Tan, Karl P. Davidson, Xuesong Xu, Varun Chaudhary, R.V. Ramanujan

    Published 2025-01-01
    “…The results show that the experimental property values of arc melted samples deviated less than 14% from predicted values. This work further explains how structural variations across synthesis methods impact property behavior, validating the robustness of ML-predicted compositions and highlighting a pathway for integrating processing conditions into alloy development.…”
    Get full text
    Article
  6. 946

    Determination Method of the Active Mg Content in the Melt of Ductile Iron by XU Zhen-yu, LI Da-yong, MA Xu-liang, WANG Li-hua

    Published 2018-08-01
    “…Within the scope of the Mg content of 0. 025% ~ 0. 06% ,the predicted value Mg% of magnesium content is correlated with corresponding thermal analysis solidification characteristic parameters significantly,so the calculated results are reliable. …”
    Get full text
    Article
  7. 947

    Robust personalized pricing under uncertainty of purchase probabilities by Shunnosuke Ikeda, Naoki Nishimura, Noriyoshi Sukegawa, Yuichi Takano

    Published 2025-01-01
    “…While it is essential for personalized pricing to predict the purchase probabilities for each consumer, these predicted values are inherently subject to unavoidable prediction errors that can negatively impact the realized revenues and profits. …”
    Get full text
    Article
  8. 948

    Optimization of enzymatic hydrolysis process for preparing xanthine oxidase inhibitory peptides from skipjack tuna by ZOU Lin, HANG Miaojia, LI Yang, DU Juan, FENG Fengqin

    Published 2019-10-01
    “…Under the optimal conditions, the degree of hydrolysis was 22.38%; nitrogen recovery was 83.81%; XOD inhibition activity was 62.26%; and the contents of carnosine and anserine were 0.05% and 2.45% (on a dried basis), respectively, which were all in good agreement with the predicted values. The XOD inhibitory peptides obtained were mainly composed of a fraction with molecular mass of less than 1 000 Da. …”
    Get full text
    Article
  9. 949

    Assessment of the Phase-to-Ground Fault Apparent Admittance Method with Phase/Ground Boundaries to Detect Types of Electrical Faults for Protective Relays Using Signature Library a... by Emilio C. Piesciorovsky, Marissa E. Morales Rodriguez

    Published 2022-01-01
    “…The measured and predicted values matched in more than 90% of the tests, and the PGFA admittance method with phase/ground boundaries presented an accuracy of 94.3% and a precision of 100%.…”
    Get full text
    Article
  10. 950

    The Diagnostic Value of Serum Gastrin-17 and Pepsinogen for Gastric Cancer Screening in Eastern China by Hongzhang Shen, Kangwei Xiong, Xiangyu Wu, Sile Cheng, Qifeng Lou, Hangbin Jin, Xiaofeng Zhang

    Published 2021-01-01
    “…The sensitivity, specificity, accuracy, and positive and negative predictive values of G-17/PGII/PGR for GC diagnosis were 83.3%/70.4%/79.6%, 51.8%/56.3%/47.8%, 53.8%/57.2%/49.9%, 10.7%/10.9%/9.6%, and 97.8%/96.5%/97.1%, respectively. …”
    Get full text
    Article
  11. 951

    Left Atrial Thrombosis before Catheter Ablation or Cardioversion in Patients with Non-valvular Atrial Fibrillation or Atrial Flutter: what Risk Score is Most Informative? by I. A. Zaigraev, I. S. Yavelov, O. M. Drapkina, E. V. Bazaeva

    Published 2023-05-01
    “…>˂0.0001) with sensitivity, specificity, positive and negative predicting values 90.6%, 57.1%, 30.2% and 96.7% respectively.Conclusion. …”
    Get full text
    Article
  12. 952

    Bus Arrival Time Prediction Based on the Optimized Long Short-Term Memory Neural Network Model With the Improved Whale Algorithm by Bing Zhang, Lingfeng Tang, Dandan Zhou, Kexin Liu, Yunqiang Xue

    Published 2024-01-01
    “…The results show that the IWOA–LSTM prediction model has the best-fitting effect between the predicted values and actual values in all time periods. …”
    Get full text
    Article
  13. 953

    Analytical approach for modelling of thread crimp in jacquard woven two-dimensional fabrics by Brigita Kolcavová Sirková, Iva Mertová

    Published 2025-08-01
    “…The theoretical predicted values of thread crimp in jacquard fabrics were compared with experimentally obtained values. …”
    Get full text
    Article
  14. 954

    SOIL MOISTURE PREDICTION MODEL IN PEATLAND USING RANDOM FOREST REGRESSOR by Helda Yunita Taihuttu, Imas Sukaesih Sitanggang, Lailan Syaufina

    Published 2024-10-01
    “…RFR is used because of its ability to predict values and its resistance to overfitting and outliers. …”
    Get full text
    Article
  15. 955

    RUSSIAN VERSION OF PHQ-2 AND 9 QUESTIONNAIRES: SENSITIVITY AND SPECIFICITY IN DETECTION OF DEPRESSION IN OUTPATIENT GENERAL MEDICAL PRACTICE by N. V. Pogosova, T. V. Dovzhenko, A. G. Babin, A. A. Kursakov, V. A. Vygodin

    Published 2014-06-01
    “…Russian questionnaires were found to success in sensitivity, specificity and their positive predictive values are comparable to similar research data reported in literature. …”
    Get full text
    Article
  16. 956

    Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning‐enabled molecular diagnostics by Ariane Khaledi, Aaron Weimann, Monika Schniederjans, Ehsaneddin Asgari, Tzu‐Hao Kuo, Antonio Oliver, Gabriel Cabot, Axel Kola, Petra Gastmeier, Michael Hogardt, Daniel Jonas, Mohammad RK Mofrad, Andreas Bremges, Alice C McHardy, Susanne Häussler

    Published 2020-02-01
    “…Using these data types alone or in combination resulted in high (0.8–0.9) or very high (> 0.9) sensitivity and predictive values. For all drugs except for ciprofloxacin, gene expression information improved diagnostic performance. …”
    Get full text
    Article
  17. 957

    Machine Learning Analysis of Umbilic Defect Annihilation in Nematic Liquid Crystals in the Presence of Nanoparticles by Ingo Dierking, Adam Moyle, Gabriele Maria Cepparulo, Katherine Skingle, Laura Hernández, Juhan Raidal

    Published 2025-02-01
    “…It is observed that the defect annihilation scaling exponents deviate from the theoretically predicted value of α = 1/2 when nanoparticles of varying size and concentration are introduced to the system. …”
    Get full text
    Article
  18. 958
  19. 959

    Observation of ψ(3686) → Ξ − K S 0 Ω ¯ + $$ {\Xi}^{-}{K}_S^0{\overline{\varOmega}}^{+} $$ + c.c. by The BESIII collaboration, M. Ablikim, M. N. Achasov, P. Adlarson, X. C. Ai, R. Aliberti, A. Amoroso, Q. An, Y. Bai, O. Bakina, Y. Ban, H.-R. Bao, V. Batozskaya, K. Begzsuren, N. Berger, M. Berlowski, M. Bertani, D. Bettoni, F. Bianchi, E. Bianco, A. Bortone, I. Boyko, R. A. Briere, A. Brueggemann, H. Cai, M. H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, X. Y. Chai, J. F. Chang, G. R. Che, Y. Z. Che, G. Chelkov, C. Chen, C. H. Chen, Chao Chen, G. Chen, H. S. Chen, H. Y. Chen, M. L. Chen, S. J. Chen, S. L. Chen, S. M. Chen, T. Chen, X. R. Chen, X. T. Chen, Y. B. Chen, Y. Q. Chen, Z. J. Chen, Z. K. Chen, S. K. Choi, X. Chu, G. Cibinetto, F. Cossio, J. J. Cui, H. L. Dai, J. P. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, C. Q. Deng, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, B. Ding, X. X. Ding, Y. Ding, Y. Ding, Y. X. Ding, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, M. C. Du, S. X. Du, Y. Y. Duan, Z. H. Duan, P. Egorov, G. F. Fan, J. J. Fan, Y. H. Fan, J. Fang, J. Fang, S. S. Fang, W. X. Fang, Y. Q. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, Y. T. Feng, M. Fritsch, C. D. Fu, J. L. Fu, Y. W. Fu, H. Gao, X. B. Gao, Y. N. Gao, Y. N. Gao, Y. Y. Gao, Yang Gao, S. Garbolino, I. Garzia, P. T. Ge, Z. W. Ge, C. Geng, E. M. Gersabeck, A. Gilman, K. Goetzen, J. D. Gong, L. Gong, W. X. Gong, W. Gradl, S. Gramigna, M. Greco, M. H. Gu, Y. T. Gu, C. Y. Guan, A. Q. Guo, L. B. Guo, M. J. Guo, R. P. Guo, Y. P. Guo, A. Guskov, J. Gutierrez, K. L. Han, T. T. Han, F. Hanisch, K. D. Hao, X. Q. Hao, F. A. Harris, K. K. He, K. L. He, F. H. Heinsius, C. H. Heinz, Y. K. Heng, C. Herold, T. Holtmann, P. C. Hong, G. Y. Hou, X. T. Hou, Y. R. Hou, Z. L. Hou, B. Y. Hu, H. M. Hu, J. F. Hu, Q. P. Hu, S. L. Hu, T. Hu, Y. Hu, Z. M. Hu, G. S. Huang, K. X. Huang, L. Q. Huang, P. Huang, X. T. Huang, Y. P. Huang, Y. S. Huang, T. Hussain, N. Hüsken, N. in der Wiesche, J. Jackson, S. Janchiv, Q. Ji, Q. P. Ji, W. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, Z. K. Jia, D. Jiang, H. B. Jiang, P. C. Jiang, S. J. Jiang, T. J. Jiang, X. S. Jiang, Y. Jiang, J. B. Jiao, J. K. Jiao, Z. Jiao, S. Jin, Y. Jin, M. Q. Jing, X. M. Jing, T. Johansson, S. Kabana, N. Kalantar-Nayestanaki, X. L. Kang, X. S. Kang, M. Kavatsyuk, B. C. Ke, V. Khachatryan, A. Khoukaz, R. Kiuchi, O. B. Kolcu, B. Kopf, M. Kuessner, X. Kui, N. Kumar, A. Kupsc, W. Kühn, Q. Lan, W. N. Lan, T. T. Lei, M. Lellmann, T. Lenz, C. Li, C. Li, C. H. Li, C. K. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. B. Li, H. J. Li, H. N. Li, Hui Li, J. R. Li, J. S. Li, K. Li, K. L. Li, K. L. Li, L. J. Li, Lei Li, M. H. Li, M. R. Li, P. L. Li, P. R. Li, Q. M. Li, Q. X. Li, R. Li, T. Li, T. Y. Li, W. D. Li, W. G. Li, X. Li, X. H. Li, X. L. Li, X. Y. Li, X. Z. Li, Y. Li, Y. G. Li, Y. P. Li, Z. J. Li, Z. Y. Li, C. Liang, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. B. Liao, M. H. Liao, Y. P. Liao, J. Libby, A. Limphirat, C. C. Lin, C. X. Lin, D. X. Lin, L. Q. Lin, T. Lin, B. J. Liu, B. X. Liu, C. Liu, C. X. Liu, F. Liu, F. H. Liu, Feng Liu, G. M. Liu, H. Liu, H. B. Liu, H. H. Liu, H. M. Liu, Huihui Liu, J. B. Liu, J. J. Liu, K. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, L. C. Liu, Lu Liu, P. L. Liu, Q. Liu, S. B. Liu, T. Liu, W. K. Liu, W. M. Liu, W. T. Liu, X. Liu, X. Liu, X. Y. Liu, Y. Liu, Y. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Z. D. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. G. Lu, Y. Lu, Y. H. Lu, Y. P. Lu, Z. H. Lu, C. L. Luo, J. R. Luo, J. S. Luo, M. X. Luo, T. Luo, X. L. Luo, Z. Y. Lv, X. R. Lyu, Y. F. Lyu, Y. H. Lyu, F. C. Ma, H. Ma, H. L. Ma, J. L. Ma, L. L. Ma, L. R. Ma, Q. M. Ma, R. Q. Ma, R. Y. Ma, T. Ma, X. T. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, I. MacKay, M. Maggiora, S. Malde, Y. J. Mao, Z. P. Mao, S. Marcello, F. M. Melendi, Y. H. Meng, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, H. Miao, T. J. Min, R. E. Mitchell, X. H. Mo, B. Moses, N. Yu. Muchnoi, J. Muskalla, Y. Nefedov, F. Nerling, L. S. Nie, I. B. Nikolaev, Z. Ning, S. Nisar, Q. L. Niu, W. D. Niu, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, Y. P. Pei, M. Pelizaeus, H. P. Peng, Y. Y. Peng, K. Peters, J. L. Ping, R. G. Ping, S. Plura, V. Prasad, F. Z. Qi, H. R. Qi, M. Qi, S. Qian, W. B. Qian, C. F. Qiao, J. H. Qiao, J. J. Qin, J. L. Qin, L. Q. Qin, L. Y. Qin, P. B. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, Z. H. Qu, C. F. Redmer, A. Rivetti, M. Rolo, G. Rong, S. S. Rong, F. Rosini, Ch. Rosner, M. Q. Ruan, S. N. Ruan, N. Salone, A. Sarantsev, Y. Schelhaas, K. Schoenning, M. Scodeggio, K. Y. Shan, W. Shan, X. Y. Shan, Z. J. Shang, J. F. Shangguan, L. G. Shao, M. Shao, C. P. Shen, H. F. Shen, W. H. Shen, X. Y. Shen, B. A. Shi, H. Shi, J. L. Shi, J. Y. Shi, S. Y. Shi, X. Shi, H. L. Song, J. J. Song, T. Z. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, F. Stieler, S. S Su, Y. J. Su, G. B. Sun, G. X. Sun, H. Sun, H. K. Sun, J. F. Sun, K. Sun, L. Sun, S. S. Sun, T. Sun, Y. C. Sun, Y. H. Sun, Y. J. Sun, Y. Z. Sun, Z. Q. Sun, Z. T. Sun, C. J. Tang, G. Y. Tang, J. Tang, L. F. Tang, M. Tang, Y. A. Tang, L. Y. Tao, M. Tat, J. X. Teng, J. Y. Tian, W. H. Tian, Y. Tian, Z. F. Tian, I. Uman, B. Wang, B. Wang, Bo Wang, C. Wang, Cong Wang, D. Y. Wang, H. J. Wang, J. J. Wang, K. Wang, L. L. Wang, L. W. Wang, M. Wang, M. Wang, N. Y. Wang, S. Wang, T. Wang, T. J. Wang, W. Wang, W. Wang, W. P. Wang, X. Wang, X. F. Wang, X. J. Wang, X. L. Wang, X. N. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. H. Wang, Y. L. Wang, Y. N. Wang, Y. Q. Wang, Yaqian Wang, Yi Wang, Yuan Wang, Z. Wang, Z. L. Wang, Z. L. Wang, Z. Q. Wang, Z. Y. Wang, D. H. Wei, H. R. Wei, F. Weidner, S. P. Wen, Y. R. Wen, U. Wiedner, G. Wilkinson, M. Wolke, C. Wu, J. F. Wu, L. H. Wu, L. J. Wu, Lianjie Wu, S. G. Wu, S. M. Wu, X. Wu, X. H. Wu, Y. J. Wu, Z. Wu, L. Xia, X. M. Xian, B. H. Xiang, T. Xiang, D. Xiao, G. Y. Xiao, H. Xiao, Y. L. Xiao, Z. J. Xiao, C. Xie, K. J. Xie, X. H. Xie, Y. Xie, Y. G. Xie, Y. H. Xie, Z. P. Xie, T. Y. Xing, C. F. Xu, C. J. Xu, G. F. Xu, H. Y. Xu, H. Y. Xu, M. Xu, Q. J. Xu, Q. N. Xu, W. L. Xu, X. P. Xu, Y. Xu, Y. Xu, Y. C. Xu, Z. S. Xu, H. Y. Yan, L. Yan, W. B. Yan, W. C. Yan, W. P. Yan, X. Q. Yan, H. J. Yang, H. L. Yang, H. X. Yang, J. H. Yang, R. J. Yang, T. Yang, Y. Yang, Y. F. Yang, Y. H. Yang, Y. Q. Yang, Y. X. Yang, Y. Z. Yang, M. Ye, M. H. Ye, Junhao Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, M. C. Yu, T. Yu, X. D. Yu, Y. C. Yu, C. Z. Yuan, H. Yuan, J. Yuan, J. Yuan, L. Yuan, S. C. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, Ying Yue, A. A. Zafar, S. H. Zeng, X. Zeng, Y. Zeng, Y. J. Zeng, Y. J. Zeng, X. Y. Zhai, Y. H. Zhan, A. Q. Zhang, B. L. Zhang, B. X. Zhang, D. H. Zhang, G. Y. Zhang, G. Y. Zhang, H. Zhang, H. Zhang, H. C. Zhang, H. H. Zhang, H. Q. Zhang, H. R. Zhang, H. Y. Zhang, J. Zhang, J. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. S. Zhang, J. W. Zhang, J. X. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, L. M. Zhang, Lei Zhang, N. Zhang, P. Zhang, Q. Zhang, Q. Y. Zhang, R. Y. Zhang, S. H. Zhang, Shulei Zhang, X. M. Zhang, X. Y Zhang, X. Y. Zhang, Y. Zhang, Y. Zhang, Y. T. Zhang, Y. H. Zhang, Y. M. Zhang, Z. D. Zhang, Z. H. Zhang, Z. L. Zhang, Z. L. Zhang, Z. X. Zhang, Z. Y. Zhang, Z. Y. Zhang, Z. Z. Zhang, Zh. Zh. Zhang, G. Zhao, J. Y. Zhao, J. Z. Zhao, L. Zhao, Lei Zhao, M. G. Zhao, N. Zhao, R. P. Zhao, S. J. Zhao, Y. B. Zhao, Y. L. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, B. M. Zheng, J. P. Zheng, W. J. Zheng, X. R. Zheng, Y. H. Zheng, B. Zhong, X. Zhong, H. Zhou, J. Q. Zhou, J. Y. Zhou, S. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, Y. Z. Zhou, Z. C. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, K. S. Zhu, L. Zhu, L. X. Zhu, S. H. Zhu, T. J. Zhu, W. D. Zhu, W. D. Zhu, W. J. Zhu, W. Z. Zhu, Y. C. Zhu, Z. A. Zhu, X. Y. Zhuang, J. H. Zou, J. Zu

    Published 2025-06-01
    “…The ratio between B ψ 3686 → Ξ − K S 0 Ω ¯ + + c . c $$ {\mathcal{B}}_{\psi (3686)\to {\varXi}^{-}{K}_S^0{\overline{\varOmega}}^{+}+c.c} $$ and B ψ 3686 → Ω − K + Ξ ¯ 0 + c . c $$ {\mathcal{B}}_{\psi (3686)\to {\varOmega}^{-}{K}^{+}{\overline{\Xi}}^0+c.c} $$ is determined to be 1.05 ± 0.23 ± 0.14, which deviates from the isospin symmetry conservation predicted value of 0.5 by 2.1σ.…”
    Get full text
    Article
  20. 960

    Improve the Intelligent Convenience of Multivariate Optimization of Concrete Mix Ratio and the Development of Corresponding Applications by Zhanfei Yang, Bin Chen, Jianfen Zhou, Saihua Huang

    Published 2024-01-01
    “…The prediction and actual error of 7-day intensity and 28-day intensity are −14.4% to −6.1% and −17.6% to 0.6%, respectively, while the predicted value and actual slump error are 15%. The results show that the error between the measured value and the design value is basically within 15%, which meets the design requirements. …”
    Get full text
    Article