Showing 661 - 680 results of 1,392 for search '(("the prediction value") OR ((("the reduction value") OR ("the education value"))))', query time: 0.12s Refine Results
  1. 661

    The role of MRI in the management of patients with a histological diagnosis of B3 breast lesion after vacuum-assisted biopsy: A case report and a brief review of the literature by Valeria Liberto, MD, Francesca Di Giuliano, PhD, Eleni Chatelou, MD, Paola Elda Gigliotti, MD, Maria Volpe, MD, Maria Pitaro, MD, Glenda Antonelli, MD, Ludovica Mancini, MD, Chiara Adriana Pistolese, PhD

    Published 2025-07-01
    “…The authors highlight the importance of MRI's high negative predictive value in excluding malignancy, especially in conjunction with VAE, which allows for more comprehensive tissue sampling and reduces the need for surgical excision in B3 cases. …”
    Get full text
    Article
  2. 662

    “CVCACS” MODEL FOR PREDICTION OF CARDIOVASCULAR COMPLICATIONS IN HOSPITALIZED PATIENTS WITH ACUTE CORONARY SYNDROME by E. T. Manyukova, M. A. Shalenkova, Z. D. Mikhailova

    Published 2015-03-01
    “…In order to facilitate the prediction values of CVC during ACS hospital period we have proposed a “CVCACS” model that employed the parameters of patient’s age, IL-10 level in the saliva, IL-6, and hs-CRP amounts in blood. …”
    Get full text
    Article
  3. 663

    ПРОГНОЗИРОВАНИЕ ТРАНСФОРМАЦИИ РЕЦИДИВИРУЮЩЕЙ ФОРМЫ ФИБРИЛЛЯЦИИ ПРЕДСЕРДИЙ В ХРОНИЧЕСКУЮ У ПАЦИЕНТОВ С АРТЕРИАЛЬНОЙ ГИПЕРТОНИЕЙ... by Н. Е. Григориади, Л. М. Василец, А. В. Туев, А. В. Петруша, Е. А. Ратанова

    Published 2014-04-01
    “…It was revealed that the performance of remodeling of the left atrium (the level of PICP, TIMP-1, and the index of the PL to the BSA) have predictive value in the risk of progression of AF. The risk of transition to a chronic form of arrhythmia increases as the concentration of PICP over 133 ng/ml (Se 70–73% and Sp 62–75%), at a concentration of TIMP-1 less than 490 ng/ml (Se 67–78%, Sp 69–75%) and index of LP to PPT than 32–34 ml/m 2 (Se 80%, Sp 77–83%). …”
    Get full text
    Article
  4. 664
  5. 665

    Observation of ψ(3686) → Ξ − K S 0 Ω ¯ + $$ {\Xi}^{-}{K}_S^0{\overline{\varOmega}}^{+} $$ + c.c. by The BESIII collaboration, M. Ablikim, M. N. Achasov, P. Adlarson, X. C. Ai, R. Aliberti, A. Amoroso, Q. An, Y. Bai, O. Bakina, Y. Ban, H.-R. Bao, V. Batozskaya, K. Begzsuren, N. Berger, M. Berlowski, M. Bertani, D. Bettoni, F. Bianchi, E. Bianco, A. Bortone, I. Boyko, R. A. Briere, A. Brueggemann, H. Cai, M. H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, X. Y. Chai, J. F. Chang, G. R. Che, Y. Z. Che, G. Chelkov, C. Chen, C. H. Chen, Chao Chen, G. Chen, H. S. Chen, H. Y. Chen, M. L. Chen, S. J. Chen, S. L. Chen, S. M. Chen, T. Chen, X. R. Chen, X. T. Chen, Y. B. Chen, Y. Q. Chen, Z. J. Chen, Z. K. Chen, S. K. Choi, X. Chu, G. Cibinetto, F. Cossio, J. J. Cui, H. L. Dai, J. P. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, C. Q. Deng, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, B. Ding, X. X. Ding, Y. Ding, Y. Ding, Y. X. Ding, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, M. C. Du, S. X. Du, Y. Y. Duan, Z. H. Duan, P. Egorov, G. F. Fan, J. J. Fan, Y. H. Fan, J. Fang, J. Fang, S. S. Fang, W. X. Fang, Y. Q. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, Y. T. Feng, M. Fritsch, C. D. Fu, J. L. Fu, Y. W. Fu, H. Gao, X. B. Gao, Y. N. Gao, Y. N. Gao, Y. Y. Gao, Yang Gao, S. Garbolino, I. Garzia, P. T. Ge, Z. W. Ge, C. Geng, E. M. Gersabeck, A. Gilman, K. Goetzen, J. D. Gong, L. Gong, W. X. Gong, W. Gradl, S. Gramigna, M. Greco, M. H. Gu, Y. T. Gu, C. Y. Guan, A. Q. Guo, L. B. Guo, M. J. Guo, R. P. Guo, Y. P. Guo, A. Guskov, J. Gutierrez, K. L. Han, T. T. Han, F. Hanisch, K. D. Hao, X. Q. Hao, F. A. Harris, K. K. He, K. L. He, F. H. Heinsius, C. H. Heinz, Y. K. Heng, C. Herold, T. Holtmann, P. C. Hong, G. Y. Hou, X. T. Hou, Y. R. Hou, Z. L. Hou, B. Y. Hu, H. M. Hu, J. F. Hu, Q. P. Hu, S. L. Hu, T. Hu, Y. Hu, Z. M. Hu, G. S. Huang, K. X. Huang, L. Q. Huang, P. Huang, X. T. Huang, Y. P. Huang, Y. S. Huang, T. Hussain, N. Hüsken, N. in der Wiesche, J. Jackson, S. Janchiv, Q. Ji, Q. P. Ji, W. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, Z. K. Jia, D. Jiang, H. B. Jiang, P. C. Jiang, S. J. Jiang, T. J. Jiang, X. S. Jiang, Y. Jiang, J. B. Jiao, J. K. Jiao, Z. Jiao, S. Jin, Y. Jin, M. Q. Jing, X. M. Jing, T. Johansson, S. Kabana, N. Kalantar-Nayestanaki, X. L. Kang, X. S. Kang, M. Kavatsyuk, B. C. Ke, V. Khachatryan, A. Khoukaz, R. Kiuchi, O. B. Kolcu, B. Kopf, M. Kuessner, X. Kui, N. Kumar, A. Kupsc, W. Kühn, Q. Lan, W. N. Lan, T. T. Lei, M. Lellmann, T. Lenz, C. Li, C. Li, C. H. Li, C. K. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. B. Li, H. J. Li, H. N. Li, Hui Li, J. R. Li, J. S. Li, K. Li, K. L. Li, K. L. Li, L. J. Li, Lei Li, M. H. Li, M. R. Li, P. L. Li, P. R. Li, Q. M. Li, Q. X. Li, R. Li, T. Li, T. Y. Li, W. D. Li, W. G. Li, X. Li, X. H. Li, X. L. Li, X. Y. Li, X. Z. Li, Y. Li, Y. G. Li, Y. P. Li, Z. J. Li, Z. Y. Li, C. Liang, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. B. Liao, M. H. Liao, Y. P. Liao, J. Libby, A. Limphirat, C. C. Lin, C. X. Lin, D. X. Lin, L. Q. Lin, T. Lin, B. J. Liu, B. X. Liu, C. Liu, C. X. Liu, F. Liu, F. H. Liu, Feng Liu, G. M. Liu, H. Liu, H. B. Liu, H. H. Liu, H. M. Liu, Huihui Liu, J. B. Liu, J. J. Liu, K. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, L. C. Liu, Lu Liu, P. L. Liu, Q. Liu, S. B. Liu, T. Liu, W. K. Liu, W. M. Liu, W. T. Liu, X. Liu, X. Liu, X. Y. Liu, Y. Liu, Y. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Z. D. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. G. Lu, Y. Lu, Y. H. Lu, Y. P. Lu, Z. H. Lu, C. L. Luo, J. R. Luo, J. S. Luo, M. X. Luo, T. Luo, X. L. Luo, Z. Y. Lv, X. R. Lyu, Y. F. Lyu, Y. H. Lyu, F. C. Ma, H. Ma, H. L. Ma, J. L. Ma, L. L. Ma, L. R. Ma, Q. M. Ma, R. Q. Ma, R. Y. Ma, T. Ma, X. T. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, I. MacKay, M. Maggiora, S. Malde, Y. J. Mao, Z. P. Mao, S. Marcello, F. M. Melendi, Y. H. Meng, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, H. Miao, T. J. Min, R. E. Mitchell, X. H. Mo, B. Moses, N. Yu. Muchnoi, J. Muskalla, Y. Nefedov, F. Nerling, L. S. Nie, I. B. Nikolaev, Z. Ning, S. Nisar, Q. L. Niu, W. D. Niu, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, Y. P. Pei, M. Pelizaeus, H. P. Peng, Y. Y. Peng, K. Peters, J. L. Ping, R. G. Ping, S. Plura, V. Prasad, F. Z. Qi, H. R. Qi, M. Qi, S. Qian, W. B. Qian, C. F. Qiao, J. H. Qiao, J. J. Qin, J. L. Qin, L. Q. Qin, L. Y. Qin, P. B. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, Z. H. Qu, C. F. Redmer, A. Rivetti, M. Rolo, G. Rong, S. S. Rong, F. Rosini, Ch. Rosner, M. Q. Ruan, S. N. Ruan, N. Salone, A. Sarantsev, Y. Schelhaas, K. Schoenning, M. Scodeggio, K. Y. Shan, W. Shan, X. Y. Shan, Z. J. Shang, J. F. Shangguan, L. G. Shao, M. Shao, C. P. Shen, H. F. Shen, W. H. Shen, X. Y. Shen, B. A. Shi, H. Shi, J. L. Shi, J. Y. Shi, S. Y. Shi, X. Shi, H. L. Song, J. J. Song, T. Z. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, F. Stieler, S. S Su, Y. J. Su, G. B. Sun, G. X. Sun, H. Sun, H. K. Sun, J. F. Sun, K. Sun, L. Sun, S. S. Sun, T. Sun, Y. C. Sun, Y. H. Sun, Y. J. Sun, Y. Z. Sun, Z. Q. Sun, Z. T. Sun, C. J. Tang, G. Y. Tang, J. Tang, L. F. Tang, M. Tang, Y. A. Tang, L. Y. Tao, M. Tat, J. X. Teng, J. Y. Tian, W. H. Tian, Y. Tian, Z. F. Tian, I. Uman, B. Wang, B. Wang, Bo Wang, C. Wang, Cong Wang, D. Y. Wang, H. J. Wang, J. J. Wang, K. Wang, L. L. Wang, L. W. Wang, M. Wang, M. Wang, N. Y. Wang, S. Wang, T. Wang, T. J. Wang, W. Wang, W. Wang, W. P. Wang, X. Wang, X. F. Wang, X. J. Wang, X. L. Wang, X. N. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. H. Wang, Y. L. Wang, Y. N. Wang, Y. Q. Wang, Yaqian Wang, Yi Wang, Yuan Wang, Z. Wang, Z. L. Wang, Z. L. Wang, Z. Q. Wang, Z. Y. Wang, D. H. Wei, H. R. Wei, F. Weidner, S. P. Wen, Y. R. Wen, U. Wiedner, G. Wilkinson, M. Wolke, C. Wu, J. F. Wu, L. H. Wu, L. J. Wu, Lianjie Wu, S. G. Wu, S. M. Wu, X. Wu, X. H. Wu, Y. J. Wu, Z. Wu, L. Xia, X. M. Xian, B. H. Xiang, T. Xiang, D. Xiao, G. Y. Xiao, H. Xiao, Y. L. Xiao, Z. J. Xiao, C. Xie, K. J. Xie, X. H. Xie, Y. Xie, Y. G. Xie, Y. H. Xie, Z. P. Xie, T. Y. Xing, C. F. Xu, C. J. Xu, G. F. Xu, H. Y. Xu, H. Y. Xu, M. Xu, Q. J. Xu, Q. N. Xu, W. L. Xu, X. P. Xu, Y. Xu, Y. Xu, Y. C. Xu, Z. S. Xu, H. Y. Yan, L. Yan, W. B. Yan, W. C. Yan, W. P. Yan, X. Q. Yan, H. J. Yang, H. L. Yang, H. X. Yang, J. H. Yang, R. J. Yang, T. Yang, Y. Yang, Y. F. Yang, Y. H. Yang, Y. Q. Yang, Y. X. Yang, Y. Z. Yang, M. Ye, M. H. Ye, Junhao Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, M. C. Yu, T. Yu, X. D. Yu, Y. C. Yu, C. Z. Yuan, H. Yuan, J. Yuan, J. Yuan, L. Yuan, S. C. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, Ying Yue, A. A. Zafar, S. H. Zeng, X. Zeng, Y. Zeng, Y. J. Zeng, Y. J. Zeng, X. Y. Zhai, Y. H. Zhan, A. Q. Zhang, B. L. Zhang, B. X. Zhang, D. H. Zhang, G. Y. Zhang, G. Y. Zhang, H. Zhang, H. Zhang, H. C. Zhang, H. H. Zhang, H. Q. Zhang, H. R. Zhang, H. Y. Zhang, J. Zhang, J. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. S. Zhang, J. W. Zhang, J. X. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, L. M. Zhang, Lei Zhang, N. Zhang, P. Zhang, Q. Zhang, Q. Y. Zhang, R. Y. Zhang, S. H. Zhang, Shulei Zhang, X. M. Zhang, X. Y Zhang, X. Y. Zhang, Y. Zhang, Y. Zhang, Y. T. Zhang, Y. H. Zhang, Y. M. Zhang, Z. D. Zhang, Z. H. Zhang, Z. L. Zhang, Z. L. Zhang, Z. X. Zhang, Z. Y. Zhang, Z. Y. Zhang, Z. Z. Zhang, Zh. Zh. Zhang, G. Zhao, J. Y. Zhao, J. Z. Zhao, L. Zhao, Lei Zhao, M. G. Zhao, N. Zhao, R. P. Zhao, S. J. Zhao, Y. B. Zhao, Y. L. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, B. M. Zheng, J. P. Zheng, W. J. Zheng, X. R. Zheng, Y. H. Zheng, B. Zhong, X. Zhong, H. Zhou, J. Q. Zhou, J. Y. Zhou, S. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, Y. Z. Zhou, Z. C. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, K. S. Zhu, L. Zhu, L. X. Zhu, S. H. Zhu, T. J. Zhu, W. D. Zhu, W. D. Zhu, W. J. Zhu, W. Z. Zhu, Y. C. Zhu, Z. A. Zhu, X. Y. Zhuang, J. H. Zou, J. Zu

    Published 2025-06-01
    “…The ratio between B ψ 3686 → Ξ − K S 0 Ω ¯ + + c . c $$ {\mathcal{B}}_{\psi (3686)\to {\varXi}^{-}{K}_S^0{\overline{\varOmega}}^{+}+c.c} $$ and B ψ 3686 → Ω − K + Ξ ¯ 0 + c . c $$ {\mathcal{B}}_{\psi (3686)\to {\varOmega}^{-}{K}^{+}{\overline{\Xi}}^0+c.c} $$ is determined to be 1.05 ± 0.23 ± 0.14, which deviates from the isospin symmetry conservation predicted value of 0.5 by 2.1σ.…”
    Get full text
    Article
  6. 666

    Gamification in Virtual Reality Museums: Effects on Hedonic and Eudaimonic Experiences in Cultural Heritage Learning by Sumalee Sangamuang, Natchaya Wongwan, Kannikar Intawong, Songpon Khanchai, Kitti Puritat

    Published 2025-03-01
    “…These results underscore the potential of gamified VR environments to balance entertainment and educational value, offering insights into user-centered design strategies for virtual museum systems that bridge technology, culture, and engagement.…”
    Get full text
    Article
  7. 667

    Assessing the impacts of individual and collaborative educational games on english spelling skills among young learners by Mahsa Taati Jeliseh, Ismail Xodabande

    Published 2025-08-01
    “…These findings suggest that collaborative gaming may offer a more effective approach to enhancing spelling skills in young learners compared to individual gaming or traditional methods, highlighting the educational value of peer interaction in language learning.…”
    Get full text
    Article
  8. 668

    Expression of TLR4 Is Upregulated in Patients with Sporadic Acute Stanford Type A Aortic Dissection by Xinyi Liu, Ai Zhang, Nianguo Dong, Zhiwen Wang

    Published 2022-01-01
    “…In addition, TLR4-mediated inflammatory product, such as IL-1β and CCL5, could be novel and promising biomarkers with important diagnostic and predictive value in the identification of sporadic TAAD diseases.…”
    Get full text
    Article
  9. 669

    Association of albumin-bilirubin grade with survival outcomes in patients with cholangiocarcinoma. by Jing Ye, Rongqiang Liu, Jianguo Wang, Wangbin Ma, Chen Chen, Jia Yu, Weixing Wang

    Published 2025-01-01
    “…Subgroup analysis further showed that high ALBI grade had better predictive value for Asian population(HR:1.92;95%CI:1.46-2.51). …”
    Get full text
    Article
  10. 670

    Improve the Intelligent Convenience of Multivariate Optimization of Concrete Mix Ratio and the Development of Corresponding Applications by Zhanfei Yang, Bin Chen, Jianfen Zhou, Saihua Huang

    Published 2024-01-01
    “…The prediction and actual error of 7-day intensity and 28-day intensity are −14.4% to −6.1% and −17.6% to 0.6%, respectively, while the predicted value and actual slump error are 15%. The results show that the error between the measured value and the design value is basically within 15%, which meets the design requirements. …”
    Get full text
    Article
  11. 671

    Prediction of Influence of Environmental Factors on the Toxicity of Pentachlorophenol on <i>E. coli</i>-Based Bioassays by Sulivan Jouanneau, Gerald Thouand

    Published 2025-05-01
    “…This model was validated using a validation dataset and demonstrated a strong correlation between the experimental and predicted values (r<sup>2</sup> ≈ 0.9). Thus, this approach enables the effective prediction of PCP’s effects by accounting for environmental variations. …”
    Get full text
    Article
  12. 672

    Association between residual cholesterol and vulnerable non-culprit lesions progressing to major adverse cardiovascular events by Fengfeng Wang, Qun Li

    Published 2025-08-01
    “…ROC analysis yielded moderate predictive value (AUC = 0.720).ConclusionElevated RC is associated with greater plaque vulnerability and increased MACE risk in patients with NCCL-TCFA. …”
    Get full text
    Article
  13. 673

    Are NLR Rate and MPV Values Useful in Predicting Malignancy in Follicular Neoplasia, Atypia of Undetermined Significance and Suspicious Cytology? by Murat Doğan, Aykut Soyder

    Published 2020-04-01
    “…The aim of this study was to investigate the predictive values of these two parameters in detecting thyroid malignancy.Materials and Methods:Patients who were reported to have atypia of undetermined significance, follicular neoplasia and suspected cytology as a result of thyroid fine needle aspiration biopsy (FNAB) in a tertiary health care facility between January 2010 and December 2017 and who had undergone total thyroidectomy or hemithyroidectomy due to this were evaluated. …”
    Get full text
    Article
  14. 674

    Methods of creating and using a digital twin of a mobile transport and transshipment rope complex by I. A. Lagerev, V. I. Tarichko, A. V. Panfilov

    Published 2020-10-01
    “…To do this, the actual value of the load suspension point coordinate obtained through the video stream processing method was compared to the predicted value calculated using a digital twin.Discussion and Conclusions. …”
    Get full text
    Article
  15. 675

    Enhancing EHR-based pancreatic cancer prediction with LLM-derived embeddings by Jiheum Park, Jason Patterson, Jose M. Acitores Cortina, Tian Gu, Chin Hur, Nicholas Tatonetti

    Published 2025-07-01
    “…Our model achieved a higher positive predictive value (0.141) than using traditional risk factors (0.004), and identified many PC patients without these risk factors or known genetic variants. …”
    Get full text
    Article
  16. 676

    Significance of bleeding during acute pulmonary thromboembolism treatment by Subotić-Atanasković Bojana, Obradović Slobodan

    Published 2024-01-01
    “…During stable, long-term oral anticoagulant therapy, the VTE-BLEED score showed a high predictive value for bleeding event, even in the external PTE population. …”
    Get full text
    Article
  17. 677

    FORECASTING VALUES OF CHROMATICITY OF DRINKING AND SOURCE WATERS USING ARIMA MODEL AND NEURAL NETWORK by D. V. Makarov, E. A. Kantor, N. A. Krasulina, A. V. Greb, Z. Z. Berezhnova

    Published 2019-04-01
    “…It was revealed that ANN allows to obtain the predicted values of colour of water more accurate than ARIMA-model.Main conclusions. …”
    Get full text
    Article
  18. 678

    Measuring appreciation made EA-SI-the development of a short scale to measure experienced appreciation in social interactions at work by Maximilian Stefan Resch, Elena Nagelmann, Henrik Bellhäuser

    Published 2025-03-01
    “…Social support was added as a control variable to test for EA-SI’s incremental predictive value. The results highlight the unidimensional structure of EA-SI and point toward high reliability and validity of the short scale. …”
    Get full text
    Article
  19. 679

    Nonlinear quenching of excitonic emission from nanoplatelet films at high excitation densities by Simon Jessen, Alessio Di Giacomo, Iwan Moreels, Brian Julsgaard, Rosana M. Turtos

    Published 2025-07-01
    “…Despite this, light yield estimations based on a simulated distribution of excitation densities predict values upwards of 2000 ph/MeV, while showing ample room for improvement and the future potential of surpassing the 10 ph/MeV/ps benchmark.…”
    Get full text
    Article
  20. 680

    Deep analysis of chemically treated Jute/Kenaf and glass fiber reinforced with SiO2 nanoparticles by utilizing RSM optimization by S. Jothi Arunachalam, R. Saravanan, T. Sathish

    Published 2025-06-01
    “…Experimental results closely matched predicted values, affirming the model's accuracy. The study found that silane concentration had a significant effect on the flexural and hardness properties. …”
    Get full text
    Article