Published 2025-01-01
“…Utilizing GF remote sensing images covering the <italic>tamarix chinensis</italic> research area in the Yellow River Delta, along with field survey data, the model achieves precise classification of different mixed <italic>tamarix chinensis</
italic> types. Key results include: 1) The proposed model, trained with only 5% of the source domain samples, achieves an overall classification accuracy of 96.52% on the target domain samples, which is a 17.61% improvement compared with the traditional network U-Net without domain adaptation. 2) Compared with domain adaptation algorithms DAN and S-DMM, the proposed ER-GMMD model demonstrates higher accuracy on the constructed dataset, indicating its potential for high-precision classification of mixed vegetation in coastal wetlands.…”
Get full text
Article