Showing 341 - 360 results of 394 for search '"gerontology"', query time: 0.09s Refine Results
  1. 341
  2. 342
  3. 343
  4. 344
  5. 345

    High BMP7 Expression May Worsen Airway Disease in COPD by Altering Epithelial Cell Behavior by Dong W, Xie M, Ming C, Li H, Xu X, Cui L, Wang W, Li Y

    Published 2025-01-01
    “…Wenyan Dong,1,* Mengshuang Xie,2,* Chunjie Ming,3 Haijun Li,2 Xia Xu,2 Liwei Cui,4 Wei Wang,5 Yi Li6 1Department of General Practice, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China; 2Department of Geriatric Medicine, Laboratory of Gerontology and Anti-aging Research, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China; 3National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China; 4Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China; 5Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China; 6Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China*These authors contributed equally to this workCorrespondence: Wei Wang; Yi Li, Email styw28@163.com; 202062009073@email.sdu.edu.cnPurpose: Airway disease is the main pathological basis of chronic obstructive pulmonary disease (COPD), but the underlying mechanisms are unknown. …”
    Get full text
    Article
  6. 346
  7. 347
  8. 348
  9. 349
  10. 350
  11. 351

    International norms for adult handgrip strength: A systematic review of data on 2.4 million adults aged 20 to 100+ years from 69 countries and regions by Grant R. Tomkinson, Justin J. Lang, Lukáš Rubín, Ryan McGrath, Bethany Gower, Terry Boyle, Marilyn G. Klug, Alexandra J. Mayhew, Henry T. Blake, Francisco B. Ortega, Cristina Cadenas-Sanchez, Costan G. Magnussen, Brooklyn J. Fraser, Tetsuhiro Kidokoro, Yang Liu, Kaare Christensen, Darryl P. Leong, Mette Aadahl, Edimansyah Abdin, Julian Alcazar, Aqeel Alenazi, Bader Alqahtani, Cledir De A. Amaral, Thatiana L.M. Amaral, Alex Andrade Fernandes, Peter Axelsson, Jennifer N. Baldwin, Karin Bammann, Aline R. Barbosa, Ameline Bardo, Inosha Bimali, Peter Bjerregaard, Martin Bobak, Colin A. Boreham, Klaus Bös, João Carlos Bouzas Marins, Joshua Burns, Nadezda Capkova, Lilia Castillo-Martínez, Liang-Kung Chen, Siu Ming Choi, Rebecca K.J. Choong, Susana C. Confortin, Cyrus Cooper, Jorge E. Correa-Bautista, Amandine Cournil, Grace Cruz, Eling D. de Bruin, José Antonio De Paz, Bruno De Souza Moreira, Luiz Antonio Dos Anjos, María Cristina Enríquez Reyna, Eduardo Ferriolli, Gillian Forrester, Elena Frolova, Abadi K. Gebre, Atef M. Ghaleb, Tiffany K. Gill, Yasuyuki Gondo, M. Cristina Gonzalez, Citlali Gonzalez Alvarez, Mary K. Hannah, Nicholas C. Harvey, Jean-Yves Hogrel, Marie-Theres Huemer, Toshiko Iidaka, Lewis A. Ingram, Dmitri A. Jdanov, Victoria L. Keevil, Wolfgang Kemmler, Rose Anne Kenny, Dae-Yeon Kim, Tracy L. Kivell, Ingirid G.H. Kjær, Alexander Kluttig, Rumi Kozakai, Danit Langer, Lisbeth A. Larsen, Wei-Ju Lee, David A. Leon, Eric Lichtenstein, Bertis B. Little, Roberto Alves Lourenço, Rahul Malhotra, Robert M. Malina, Kiyoaki Matsumoto, Tal Mazor-Karsenty, Marnee J. McKay, Sinéad McLoughlin, Abhishek L. Mensegere, Mostafa Mohammadian, Virgilio Garcia Moreira, Hiroshi Murayama, Anne Murray, Anita Liberalesso Neri, Claudia Niessner, Gabriel Núñez Othón, Gabriel Olveira, Suzanne G. Orchard, Andrezj Pajak, Chan Woong Park, Julie A. Pasco, Maria E. Peña Reyes, Leani Souza Máximo Pereira, Annette Peters, Eric Tsz-Chun Poon, Margareth C. Portela, Jedd Pratt, Robinson Ramírez-Vélez, Wendy Rodríguez-García, Joanne Ryan, Mauricio A. San-Martín, Francisco José Sánchez-Torralvo, Mahnaz Saremi, Arno Schmidt-Trucksäss, Satoshi Seino, Shamsul Azhar Shah, Marc Sim, Bjørn Heine Strand, Mythily Subramaniam, Charlotte Suetta, Sophia X. Sui, Jonas S. Sundarakumar, Koya Suzuki, Abdonas Tamosiunas, Maw Pin Tan, Yu Taniguchi, Barbara Thorand, Anna Turusheva, Anne Therese Tveter, Jonathan Wagner, Dao Wang, Stuart J. Warden, Julia Wearing, Shiou Liang Wee, Leo D. Westbury, Agnieszka Wiśniowska-Szurlej, Alexander Woll, Noriko Yoshimura, Ruby Yu

    Published 2025-12-01
    Get full text
    Article
  12. 352
  13. 353
  14. 354
  15. 355
  16. 356
  17. 357

    Prediction of Acute Kidney Injury for Critically Ill Cardiogenic Shock Patients with Machine Learning Algorithms by Zhang X, Xiong Y, Liu H, Liu Q, Chen S

    Published 2025-01-01
    “…Xiaofei Zhang,1,* Yonghong Xiong,2,* Huilan Liu,3 Qian Liu,4 Shubin Chen5 1Department of Gerontology, China Aerospace Science & Industry Corporation 731 hospital, Beijing, People’s Republic of China; 2Department of Cardiology, Beijing Feng Tai Hospital, Beijing, People’s Republic of China; 3Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China; 4Department of Cardiology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People’s Republic of China; 5Department of Intensive Care Unit, China Aerospace Science & Industry Corporation 731 hospital, Beijing, People’s Republic of China*These authors contributed equally to this workCorrespondence: Qian Liu, Department of Cardiology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, No. 100 of Xianggang Road, Jiangan District, Wuhan, 430015, People’s Republic of China, Tel +86027-82433350, Email qian_liu1124@126.com Shubin Chen, Department of Intensive Care Unit, China Aerospace Science & Industry Corporation 731 hospital, No. 3 Zhen Gang Nan Li, Yun Gang Town, Feng Tai District, Beijing, 100074, People’s Republic of China, Tel +86010-68374065, Email 18610074016@163.comBackground: The aim of this study was to use five machine learning approaches and logistic regression to design and validate the acute kidney injury (AKI) prediction model for critically ill individuals with cardiogenic shock (CS).Methods: All patients who diagnosed with CS from the MIMIC-IV database, the eICU database, and Zhongnan hospital of Wuhan university were included in this study. …”
    Get full text
    Article
  18. 358
  19. 359
  20. 360