Mapping Complex Landslide Scars Using Deep Learning and High-Resolution Topographic Derivatives from LiDAR Data in Quebec, Canada

This study evaluates deep learning (DL) models, particularly ResU-Net with attention mechanisms, for mapping landslides in Quebec, Canada, utilizing high-resolution digital elevation model (HRDEM) data and its seven derivatives (slope, aspect, hillshade, curvature, ruggedness, surface area ratio, an...

Full description

Saved in:
Bibliographic Details
Main Authors: Hejar Shahabi, Saeid Homayouni, Didier Perret, Bernard Giroux
Format: Article
Language:English
Published: Taylor & Francis Group 2024-12-01
Series:Canadian Journal of Remote Sensing
Subjects:
Online Access:http://dx.doi.org/10.1080/07038992.2024.2418087
Tags: Add Tag
No Tags, Be the first to tag this record!