Extra-Cavity Modulating a Soliton Molecule with Chirped Gaussian Pulse Shape

In this work, we theoretically simulate the modulation of a soliton molecule that has an initial chirped Gaussian pulse shape in a 1 μm extra-cavity optical fiber modulation system. Different soliton parameters in orthogonal polarizations are applied to achieve controllable optical solitons’ output...

Full description

Saved in:
Bibliographic Details
Main Authors: Daqian Tang, Junxiao Zhan, Dayu Wang, Haoming Wang, Yangyang Peng, Zian Cheak Tiu, Yan Zhou
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/11/12/1098
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, we theoretically simulate the modulation of a soliton molecule that has an initial chirped Gaussian pulse shape in a 1 μm extra-cavity optical fiber modulation system. Different soliton parameters in orthogonal polarizations are applied to achieve controllable optical solitons’ output with specific properties in the time/frequency domain. For instance, when the phase difference is changed, both pulse shapes’ and corresponding optical spectra’s peak intensities will have a sudden change when the orthogonal phase difference is π/2. These simulation results provide a beneficial reference value for extra-cavity shaping of different solitons that come from nonlinear optical systems. Optimally, the reported results could pave the groundwork for industrial growth in ultrafast laser design.
ISSN:2304-6732