Study on Fault Diagnosis Method of Bearing based on Shuffled Frog Leaping Algorithm to Optimize the BP Neural Network

Based on the background of rolling bearing fault diagnosis,taking the JZQ250 type transfer-box as test object,the shuffled frog leaping algorithm( SFLA) is combined with back propagation( BP) neural network,by using the efficient computing performance and the excellent ability of global optimization...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang Yu, Wei Xiuye
Format: Article
Language:zho
Published: Editorial Office of Journal of Mechanical Transmission 2017-01-01
Series:Jixie chuandong
Subjects:
Online Access:http://www.jxcd.net.cn/thesisDetails#10.16578/j.issn.1004.2539.2017.05.026
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Based on the background of rolling bearing fault diagnosis,taking the JZQ250 type transfer-box as test object,the shuffled frog leaping algorithm( SFLA) is combined with back propagation( BP) neural network,by using the efficient computing performance and the excellent ability of global optimization of shuffled frog leaping algorithm,the network structure of BP neural network is optimized. Through comparison,it is found that the BP neural network model optimized by shuffled frog leaping algorithm can avoid making it fall into local optimum,reduce the training time and improve the training accuracy during the training of the network,and have several advantages,such as relatively higher convergence rate and ability to accurately diagnose.Through a series of training and testing,the results show that this approach can improve the accuracy and reliability of fault diagnosis.
ISSN:1004-2539