Kneeliverse: A universal knee-detection library for performance curves
Identifying knee and elbow points in performance curves is a critical task in various domains, including machine learning and system design. These points represent optimal trade-offs between cost and performance, facilitating efficient decision-making and resource allocation. However, accurately det...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-05-01
|
| Series: | SoftwareX |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2352711025001281 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Identifying knee and elbow points in performance curves is a critical task in various domains, including machine learning and system design. These points represent optimal trade-offs between cost and performance, facilitating efficient decision-making and resource allocation. However, accurately determining the knees and elbows in curves poses a significant challenge. To address this challenge, we introduce Kneeliverse , an open-source library dedicated to knee/elbow point detection. Kneeliverse incorporates a suite of well-established knee-detection algorithms, including Menger, L-method, Kneedle, and DFDT. Additionally, Kneeliverse extends these algorithms to detect multiple knees and elbows in complex curves, employing a recursive approach. Kneeliverse further includes Z-Method, a recently developed algorithm specifically designed for multi-knee detection. |
|---|---|
| ISSN: | 2352-7110 |