An Embedded System for Real-Time Atrial Fibrillation Diagnosis Using a Multimodal Approach to ECG Data
Cardiovascular diseases pose a significant global health threat, with atrial fibrillation representing a critical precursor to more severe heart conditions. In this work, a multimodality-based deep learning model has been developed for diagnosing atrial fibrillation using an embedded system consisti...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-10-01
|
| Series: | Eng |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2673-4117/5/4/143 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Cardiovascular diseases pose a significant global health threat, with atrial fibrillation representing a critical precursor to more severe heart conditions. In this work, a multimodality-based deep learning model has been developed for diagnosing atrial fibrillation using an embedded system consisting of a Raspberry Pi 4B, an ESP8266 microcontroller, and an AD8232 single-lead ECG sensor to capture real-time ECG data. Our approach leverages a deep learning model that is capable of distinguishing atrial fibrillation from normal ECG signals. The proposed method involves real-time ECG signal acquisition and employs a multimodal model trained on the PTB-XL dataset. This model utilizes a multi-step approach combining a CNN–bidirectional LSTM for numerical ECG series tabular data and VGG16 for image-based ECG representations. A fusion layer is incorporated into the multimodal CNN-BiLSTM + VGG16 model to enhance atrial fibrillation detection, achieving state-of-the-art results with a precision of 94.07% and an F1 score of 0.94. This study demonstrates the efficacy of a multimodal approach in improving the real-time diagnosis of cardiovascular diseases. Furthermore, for edge devices, we have distilled knowledge to train a smaller student model, CNN-BiLSTM, using a larger CNN-BiLSTM model as a teacher, which achieves an accuracy of 83.21% with 0.85 s detection latency. Our work represents a significant advancement towards efficient and preventative cardiovascular health management. |
|---|---|
| ISSN: | 2673-4117 |