Belyi Maps from Zeroes of Hypergeometric Polynomials

The evaluation of low-degree hypergeometric polynomials to zero defines algebraic hypersurfaces in the affine space of the free parameters and the argument of the hypergeometric function. This article investigates the algebraic surfaces defined by the hypergeometric equation <inline-formula>&l...

Full description

Saved in:
Bibliographic Details
Main Author: Raimundas Vidunas
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/1/156
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The evaluation of low-degree hypergeometric polynomials to zero defines algebraic hypersurfaces in the affine space of the free parameters and the argument of the hypergeometric function. This article investigates the algebraic surfaces defined by the hypergeometric equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mi mathvariant="normal">F</mi><mn>1</mn><none></none><mprescripts></mprescripts><mn>2</mn><none></none></mmultiscripts><mrow><mo>(</mo><mo>−</mo><mi>N</mi><mo>,</mo><mi>b</mi><mo>;</mo><mi>c</mi><mo>;</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><mn>3</mn></mrow></semantics></math></inline-formula> or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><mn>4</mn></mrow></semantics></math></inline-formula>. As a captivating application, these surfaces parametrize certain families of genus 0 Belyi maps. Thereby, this article contributes to the systematic enumeration of Belyi maps.
ISSN:2227-7390