WDNET-YOLO: Enhanced Deep Learning for Structural Timber Defect Detection to Improve Building Safety and Reliability

Structural timber is an important building material, but surface defects such as cracks and knots seriously affect its load-bearing capacity, dimensional stability, and long-term durability, posing a significant risk to structural safety. Conventional inspection methods are unable to address the iss...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoxia Lin, Weihao Gong, Lin Sun, Xiaodong Yang, Chunwei Leng, Yan Li, Zhenyu Niu, Yingzhou Meng, Xinyue Xiao, Junyan Zhang
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/15/13/2281
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Structural timber is an important building material, but surface defects such as cracks and knots seriously affect its load-bearing capacity, dimensional stability, and long-term durability, posing a significant risk to structural safety. Conventional inspection methods are unable to address the issues of multi-scale defect characterization, inter-class confusion, and morphological diversity, thus limiting reliable construction quality assurance. To overcome these challenges, this study proposes WDNET-YOLO: an enhanced deep learning model based on YOLOv8n for high-precision defect detection in structural wood. First, the RepVGG reparameterized backbone utilizes multi-branch training to capture critical defect features (e.g., distributed cracks and dense clusters of knots) across scales. Second, the ECA attention mechanism dynamically suppresses complex wood grain interference and enhances the discriminative feature representation between high-risk defect classes (e.g., cracks vs. knots). Finally, CARAFE up-sampling with adaptive contextual reorganization improves the sensitivity to morphologically variable defects (e.g., fine cracks and resin irregularities). The analysis results show that the mAP50 and mAP50-95 of WDNET-YOLO are improved by 3.7% and 3.5%, respectively, compared to YOLOv8n, while the parameters are increased by only 4.4%. The model provides a powerful solution for automated structural timber inspection, which directly improves building safety and reliability by preventing failures caused by defects, optimizing material utilization, and supporting compliance with building quality standards.
ISSN:2075-5309