Numerical Semigroups with a Fixed Fundamental Gap

A gap <i>a</i> of a numerical semigroup <i>S</i> is fundamental if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><mn>2</mn><mi>a</mi>...

Full description

Saved in:
Bibliographic Details
Main Authors: María Ángeles Moreno-Frías, José Carlos Rosales
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/1/95
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841549190651445248
author María Ángeles Moreno-Frías
José Carlos Rosales
author_facet María Ángeles Moreno-Frías
José Carlos Rosales
author_sort María Ángeles Moreno-Frías
collection DOAJ
description A gap <i>a</i> of a numerical semigroup <i>S</i> is fundamental if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><mn>2</mn><mi>a</mi><mo>,</mo><mn>3</mn><mi>a</mi><mo>}</mo><mo>⊆</mo><mi>S</mi><mo>.</mo></mrow></semantics></math></inline-formula> In this work, we will study the set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">B</mi><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow><mo>=</mo><mfenced separators="" open="{" close="}"><mi>S</mi><mo>∣</mo><mi>S</mi><mspace width="4.pt"></mspace><mi>is</mi><mspace width="4.pt"></mspace><mi mathvariant="normal">a</mi><mspace width="4.pt"></mspace><mi>numerical</mi><mspace width="4.pt"></mspace><mi>semigroup</mi><mspace width="4.pt"></mspace><mi>and</mi><mspace width="4.pt"></mspace><mi>a</mi><mspace width="4.pt"></mspace><mrow><mi>is</mi><mspace width="4.pt"></mspace><mi mathvariant="normal">a</mi><mspace width="4.pt"></mspace><mi>fundamental</mi><mspace width="4.pt"></mspace><mi>gap</mi><mspace width="4.pt"></mspace><mi>of</mi><mspace width="4.pt"></mspace></mrow><mi>S</mi></mfenced><mo>.</mo></mrow></semantics></math></inline-formula> In particular, we will give an algorithm to compute all the elements of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">B</mi><mo>(</mo><mi>a</mi><mo>)</mo></mrow></semantics></math></inline-formula> with a given genus. The intersection of two elements of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">B</mi><mo>(</mo><mi>a</mi><mo>)</mo></mrow></semantics></math></inline-formula> is again one element of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">B</mi><mo>(</mo><mi>a</mi><mo>)</mo><mo>.</mo></mrow></semantics></math></inline-formula> A <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">B</mi><mo>(</mo><mi>a</mi><mo>)</mo></mrow></semantics></math></inline-formula>-irreducible numerical semigroup is an element of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">B</mi><mo>(</mo><mi>a</mi><mo>)</mo></mrow></semantics></math></inline-formula> that cannot be expressed as an intersection of two elements of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">B</mi><mo>(</mo><mi>a</mi><mo>)</mo></mrow></semantics></math></inline-formula> containing it properly. In this paper, we will study the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">B</mi><mo>(</mo><mi>a</mi><mo>)</mo></mrow></semantics></math></inline-formula>-irreducible numerical semigroups. In this sense we will give an algorithm to calculate all of them. Finally, we will study the submonoids of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi mathvariant="double-struck">N</mi><mo>,</mo><mo>+</mo><mo>)</mo></mrow></semantics></math></inline-formula> that can be expressed as an intersection (finite or infinite) of elements belonging to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">B</mi><mo>(</mo><mi>a</mi><mo>)</mo><mo>.</mo></mrow></semantics></math></inline-formula>
format Article
id doaj-art-f9ef549be9e046fc9c27d4307ddbc810
institution Kabale University
issn 2227-7390
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-f9ef549be9e046fc9c27d4307ddbc8102025-01-10T13:18:14ZengMDPI AGMathematics2227-73902024-12-011319510.3390/math13010095Numerical Semigroups with a Fixed Fundamental GapMaría Ángeles Moreno-Frías0José Carlos Rosales1Department of Mathematics, Faculty of Sciences, University of Cádiz, E-11510 Puerto Real, SpainDepartment of Algebra, Faculty of Sciences, University of Granada, E-18071 Granada, SpainA gap <i>a</i> of a numerical semigroup <i>S</i> is fundamental if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><mn>2</mn><mi>a</mi><mo>,</mo><mn>3</mn><mi>a</mi><mo>}</mo><mo>⊆</mo><mi>S</mi><mo>.</mo></mrow></semantics></math></inline-formula> In this work, we will study the set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">B</mi><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow><mo>=</mo><mfenced separators="" open="{" close="}"><mi>S</mi><mo>∣</mo><mi>S</mi><mspace width="4.pt"></mspace><mi>is</mi><mspace width="4.pt"></mspace><mi mathvariant="normal">a</mi><mspace width="4.pt"></mspace><mi>numerical</mi><mspace width="4.pt"></mspace><mi>semigroup</mi><mspace width="4.pt"></mspace><mi>and</mi><mspace width="4.pt"></mspace><mi>a</mi><mspace width="4.pt"></mspace><mrow><mi>is</mi><mspace width="4.pt"></mspace><mi mathvariant="normal">a</mi><mspace width="4.pt"></mspace><mi>fundamental</mi><mspace width="4.pt"></mspace><mi>gap</mi><mspace width="4.pt"></mspace><mi>of</mi><mspace width="4.pt"></mspace></mrow><mi>S</mi></mfenced><mo>.</mo></mrow></semantics></math></inline-formula> In particular, we will give an algorithm to compute all the elements of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">B</mi><mo>(</mo><mi>a</mi><mo>)</mo></mrow></semantics></math></inline-formula> with a given genus. The intersection of two elements of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">B</mi><mo>(</mo><mi>a</mi><mo>)</mo></mrow></semantics></math></inline-formula> is again one element of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">B</mi><mo>(</mo><mi>a</mi><mo>)</mo><mo>.</mo></mrow></semantics></math></inline-formula> A <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">B</mi><mo>(</mo><mi>a</mi><mo>)</mo></mrow></semantics></math></inline-formula>-irreducible numerical semigroup is an element of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">B</mi><mo>(</mo><mi>a</mi><mo>)</mo></mrow></semantics></math></inline-formula> that cannot be expressed as an intersection of two elements of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">B</mi><mo>(</mo><mi>a</mi><mo>)</mo></mrow></semantics></math></inline-formula> containing it properly. In this paper, we will study the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">B</mi><mo>(</mo><mi>a</mi><mo>)</mo></mrow></semantics></math></inline-formula>-irreducible numerical semigroups. In this sense we will give an algorithm to calculate all of them. Finally, we will study the submonoids of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi mathvariant="double-struck">N</mi><mo>,</mo><mo>+</mo><mo>)</mo></mrow></semantics></math></inline-formula> that can be expressed as an intersection (finite or infinite) of elements belonging to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">B</mi><mo>(</mo><mi>a</mi><mo>)</mo><mo>.</mo></mrow></semantics></math></inline-formula>https://www.mdpi.com/2227-7390/13/1/95numerical semigroupmonoidsfundamental gapgenusFrobenius numberalgorithm
spellingShingle María Ángeles Moreno-Frías
José Carlos Rosales
Numerical Semigroups with a Fixed Fundamental Gap
Mathematics
numerical semigroup
monoids
fundamental gap
genus
Frobenius number
algorithm
title Numerical Semigroups with a Fixed Fundamental Gap
title_full Numerical Semigroups with a Fixed Fundamental Gap
title_fullStr Numerical Semigroups with a Fixed Fundamental Gap
title_full_unstemmed Numerical Semigroups with a Fixed Fundamental Gap
title_short Numerical Semigroups with a Fixed Fundamental Gap
title_sort numerical semigroups with a fixed fundamental gap
topic numerical semigroup
monoids
fundamental gap
genus
Frobenius number
algorithm
url https://www.mdpi.com/2227-7390/13/1/95
work_keys_str_mv AT mariaangelesmorenofrias numericalsemigroupswithafixedfundamentalgap
AT josecarlosrosales numericalsemigroupswithafixedfundamentalgap