Joint sparse model based data reconstruction algorithm for wireless sensor network

The data of wireless sensor network has strong joint sparse characteristics,by utilizing compressed sensing theory,compressed data by joint encoding,and then reconstructed the data by joint decoding,the sensed data can be gathered with low computational cost.A synchronous subspace pursuit algorithm...

Full description

Saved in:
Bibliographic Details
Main Authors: Yi-yin LIU, Guo-rui LI, Li TIAN
Format: Article
Language:zho
Published: Editorial Department of Journal on Communications 2016-10-01
Series:Tongxin xuebao
Subjects:
Online Access:http://www.joconline.com.cn/zh/article/doi/10.11959/j.issn.1000-436x.2016269/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The data of wireless sensor network has strong joint sparse characteristics,by utilizing compressed sensing theory,compressed data by joint encoding,and then reconstructed the data by joint decoding,the sensed data can be gathered with low computational cost.A synchronous subspace pursuit algorithm based on joint sparse model and com-pressed sensing theory was proposed.By utilizing the sparsity of the sensed data,it selected the correct joint subspace and reconstruct the original signal group accurately with fewer observations in a backtracking iterative manner.Com-pared with SCoSaMP algorithm and SP algorithm,the proposed algorithm presents better data reconstruction perform-ance under the conditions of different sparsity and sampling rate.
ISSN:1000-436X