Sensitivity towards HDAC inhibition is associated with RTK/MAPK pathway activation in gastric cancer
Abstract Gastric cancer ranks the fifth most common and third leading cause of cancer‐related deaths worldwide. Alterations in the RTK/MAPK, WNT, cell adhesion, TP53, TGFβ, NOTCH, and NFκB signaling pathways could be identified as main oncogenic drivers. A combination of altered pathways can be asso...
Saved in:
| Main Authors: | , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Springer Nature
2022-08-01
|
| Series: | EMBO Molecular Medicine |
| Subjects: | |
| Online Access: | https://doi.org/10.15252/emmm.202215705 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Gastric cancer ranks the fifth most common and third leading cause of cancer‐related deaths worldwide. Alterations in the RTK/MAPK, WNT, cell adhesion, TP53, TGFβ, NOTCH, and NFκB signaling pathways could be identified as main oncogenic drivers. A combination of altered pathways can be associated with molecular subtypes of gastric cancer. In order to generate model systems to study the impact of different pathway alterations in a defined genetic background, we generated three murine organoid models: a RAS‐activated (KrasG12D, Tp53R172H), a WNT‐activated (Apcfl/fl, Tp53R172H), and a diffuse (Cdh1fl/fl, Apcfl/fl) model. These organoid models were morphologically and phenotypically diverse, differed in proteome expression signatures and possessed individual drug sensitivities. A differential vulnerability to RTK/MAPK pathway interference based on the different mitogenic drivers and according to the level of dependence on the pathway could be uncovered. Furthermore, an association between RTK/MAPK pathway activity and susceptibility to HDAC inhibition was observed. This finding was further validated in patient‐derived organoids from gastric adenocarcinoma, thus identifying a novel treatment approach for RTK/MAPK pathway altered gastric cancer patients. |
|---|---|
| ISSN: | 1757-4676 1757-4684 |