Evaluating PurpleAir Sensors: Do They Accurately Reflect Ambient Air Temperature?

Low-cost sensors (LCSs) emerge as a popular tool for urban micro-climate studies by offering dense observational coverage. This study evaluates the performance of PurpleAir (PA) sensors for ambient temperature monitoring—a key but underexplored aspect of their use. While widely used for particulate...

Full description

Saved in:
Bibliographic Details
Main Authors: Justin Tse, Lu Liang
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/10/3044
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Low-cost sensors (LCSs) emerge as a popular tool for urban micro-climate studies by offering dense observational coverage. This study evaluates the performance of PurpleAir (PA) sensors for ambient temperature monitoring—a key but underexplored aspect of their use. While widely used for particulate matter, PA sensors’ temperature data remain underutilized and lack thorough validation. For the first time, this research evaluates their accuracy by comparing PA temperature measurements with collocated high-precision temperature data loggers across a dense urban network in a humid subtropical U.S. county. Results show a moderate correlation with reference data (<i>r</i> = 0.86) but an average overestimation of 3.77 °C, indicating PA sensors are better suited for identifying temperature trends but not for precise applications like extreme heat events. We also developed and compared eight calibration methods to create a replicable model using readily available crowdsourced data. The best-performing model reduced <i>RMSE</i> and <i>MAE</i> by 51% and 47%, respectively, and achieved an <i>R</i><sup>2</sup> of 0.89 compared to the uncalibrated scenario. Finally, the practical application of PA temperature data for identifying heat wave events was investigated, including an assessment of associated uncertainties. In sum, this work provides a crucial evaluation of PA’s temperature monitoring capabilities, offering a pathway for improved heat mapping, multi-hazard vulnerability assessments, and public health interventions in the development of climate-resilient cities.
ISSN:1424-8220