Analog Computing for Nonlinear Shock Tube PDE Models: Test and Measurement of CMOS Chip
Long left ignored by the digital computing industry since its heyday in 1940’s, analog computing is today making a comeback as Moore’s Law slows down. Analog CMOS has power efficiency advantages over digital CMOS for low-precision applications in edge computing, scientific comp...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2025-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10818682/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Long left ignored by the digital computing industry since its heyday in 1940’s, analog computing is today making a comeback as Moore’s Law slows down. Analog CMOS has power efficiency advantages over digital CMOS for low-precision applications in edge computing, scientific computing, and artificial intelligence/machine learning (AI/ML) verticals. Driven by observed non-trivial improvements in performance over digital processors while solving linear partial differential equations (PDEs), this paper presents experimental results and analysis from a single-chip CMOS analog computer for solving nonlinear PDEs. The chip integrates a 15-point fully-parallel spatially-discrete time-continuous (SDTC) finite difference time-domain (FDTD) solver for acoustic shock wave equations with radiation boundary conditions. The design was realized in TSMC 180 nm CMOS technology. It has an active area of 7.38 mm<inline-formula> <tex-math notation="LaTeX">$\times 4.64$ </tex-math></inline-formula> mm and consumes 936 mW while delivering an equivalent FDTD temporal update rate of 80 MHz and an analog bandwidth of 2 MHz. The paper discusses the challenges and associated design trade-offs in realizing such high-performance CMOS analog computers, including sensitivity to process, voltage, and temperature (PVT) variations, sensitivity to bias and voltage regulation, errors associated with noise, difficulties with calibration; it also outlines possible approaches for mitigating these challenges. |
---|---|
ISSN: | 2169-3536 |