Using Optimized Sulphoaluminate Cement to Enhance the Early Strength of Cement-Treated Aggregate Base for Rapid Traffic Opening

In order to shorten the curing time of the cement-treated aggregate base, provide a stable paving base for an asphalt mixture, and finally, achieve rapid traffic reopening during the maintenance of the pavement (milling and resurfacing of the base layer), sulphoaluminate cement (SAC) was used to pre...

Full description

Saved in:
Bibliographic Details
Main Authors: Lingxiang Kong, Junquan Xu, Dongtao Wang, Hong Wang, Yinfei Du, Shungui Wang
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/15/11/1958
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to shorten the curing time of the cement-treated aggregate base, provide a stable paving base for an asphalt mixture, and finally, achieve rapid traffic reopening during the maintenance of the pavement (milling and resurfacing of the base layer), sulphoaluminate cement (SAC) was used to prepare cement-treated aggregate with high early strength. As a result, the SAC was first optimized by adding several cement admixtures (i.e., polycarboxylic water reducer, borax, lithium carbonate, and calcium formate) based on hydration kinetics, setting time, compressive strength, and morphology tests. Then, the optimized SAC was used to prepare the sulphoaluminate cement-treated aggregate (SACTA). The test results show that the addition of compound retarder and compound early strength agent in SAC could delay the hydration, reduce microcracks, and ensure required setting time and high early strength. Compared with ordinary Portland cement-treated aggregates (OPCTAs) with the same cement content, the 1 d unconfined compressive strength and indirect tension strength of SACTAs increased by 87.7–184.6% and 133.8–263.6% respectively. The SACTA had smaller total drying shrinkage strain and better anti-scouring performance than OPCTA when using the same cement content. Besides, the 1 d interfacial bonding strength between SACTA and OPCTA was 0.18 MPa, which was higher than the indirect tension strength of OPCTA. The findings in this study indicate that the prepared SACTA could be used for rapid traffic opening during road maintenance.
ISSN:2075-5309