Kolmogorov-type inequalities for hypersingular integrals with homogeneous characteristics

In this article we obtain sharp Kolmogorov-type inequalities that estimate the uniform norm of a hypersingular integral operator $$ D^{w,\Omega}_K f(x): = \int_{C} w(|t|_K) (f(x+t) - f(x))\Omega(t)dt, x\in C, $$ using the uniform norm of the function $f$ and either the norm $\|f\|_{H^\omega_K(...

Full description

Saved in:
Bibliographic Details
Main Authors: V.F. Babenko, O.V. Kovalenko, N.V. Parfinovych
Format: Article
Language:English
Published: Oles Honchar Dnipro National University 2024-12-01
Series:Researches in Mathematics
Subjects:
Online Access:https://vestnmath.dnu.dp.ua/index.php/rim/article/view/430/430
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841558954905174016
author V.F. Babenko
O.V. Kovalenko
N.V. Parfinovych
author_facet V.F. Babenko
O.V. Kovalenko
N.V. Parfinovych
author_sort V.F. Babenko
collection DOAJ
description In this article we obtain sharp Kolmogorov-type inequalities that estimate the uniform norm of a hypersingular integral operator $$ D^{w,\Omega}_K f(x): = \int_{C} w(|t|_K) (f(x+t) - f(x))\Omega(t)dt, x\in C, $$ using the uniform norm of the function $f$ and either the norm $\|f\|_{H^\omega_K(C)}$ determined by a modulus of continuity $\omega$, or the weighted integral norm $\| \Omega^{\frac 1p} \cdot |\nabla f|_{K^\circ}\|_{L_p(C)}$ of the gradient $\nabla f$. Here $C$ is a convex cone in ${\mathbb R}^d$, $d\geq 2$, $\Omega\colon C\to\mathbb R$ is a non-negative homogeneous of degree 0 locally integrable function, $w\colon (0,\infty)\to [0,\infty)$ is some weight function, $|\cdot|_K$ is an arbitrary norm in ${\mathbb R}^d$, $|\cdot|_{K^\circ}$ is its polar norm, and $p\in (d,\infty]$.
format Article
id doaj-art-f63f34e1acb642d3b224d441be9470ed
institution Kabale University
issn 2664-4991
2664-5009
language English
publishDate 2024-12-01
publisher Oles Honchar Dnipro National University
record_format Article
series Researches in Mathematics
spelling doaj-art-f63f34e1acb642d3b224d441be9470ed2025-01-05T19:26:10ZengOles Honchar Dnipro National UniversityResearches in Mathematics2664-49912664-50092024-12-01322213910.15421/242417Kolmogorov-type inequalities for hypersingular integrals with homogeneous characteristicsV.F. Babenko0https://orcid.org/0000-0001-6677-1914O.V. Kovalenko1https://orcid.org/0000-0002-0446-1125N.V. Parfinovych2https://orcid.org/0000-0002-3448-3798Oles Honchar Dnipro National UniversityOles Honchar Dnipro National UniversityOles Honchar Dnipro National UniversityIn this article we obtain sharp Kolmogorov-type inequalities that estimate the uniform norm of a hypersingular integral operator $$ D^{w,\Omega}_K f(x): = \int_{C} w(|t|_K) (f(x+t) - f(x))\Omega(t)dt, x\in C, $$ using the uniform norm of the function $f$ and either the norm $\|f\|_{H^\omega_K(C)}$ determined by a modulus of continuity $\omega$, or the weighted integral norm $\| \Omega^{\frac 1p} \cdot |\nabla f|_{K^\circ}\|_{L_p(C)}$ of the gradient $\nabla f$. Here $C$ is a convex cone in ${\mathbb R}^d$, $d\geq 2$, $\Omega\colon C\to\mathbb R$ is a non-negative homogeneous of degree 0 locally integrable function, $w\colon (0,\infty)\to [0,\infty)$ is some weight function, $|\cdot|_K$ is an arbitrary norm in ${\mathbb R}^d$, $|\cdot|_{K^\circ}$ is its polar norm, and $p\in (d,\infty]$.https://vestnmath.dnu.dp.ua/index.php/rim/article/view/430/430kolmogorov-type inequalityhypersingular integral operatormodulus of continuity
spellingShingle V.F. Babenko
O.V. Kovalenko
N.V. Parfinovych
Kolmogorov-type inequalities for hypersingular integrals with homogeneous characteristics
Researches in Mathematics
kolmogorov-type inequality
hypersingular integral operator
modulus of continuity
title Kolmogorov-type inequalities for hypersingular integrals with homogeneous characteristics
title_full Kolmogorov-type inequalities for hypersingular integrals with homogeneous characteristics
title_fullStr Kolmogorov-type inequalities for hypersingular integrals with homogeneous characteristics
title_full_unstemmed Kolmogorov-type inequalities for hypersingular integrals with homogeneous characteristics
title_short Kolmogorov-type inequalities for hypersingular integrals with homogeneous characteristics
title_sort kolmogorov type inequalities for hypersingular integrals with homogeneous characteristics
topic kolmogorov-type inequality
hypersingular integral operator
modulus of continuity
url https://vestnmath.dnu.dp.ua/index.php/rim/article/view/430/430
work_keys_str_mv AT vfbabenko kolmogorovtypeinequalitiesforhypersingularintegralswithhomogeneouscharacteristics
AT ovkovalenko kolmogorovtypeinequalitiesforhypersingularintegralswithhomogeneouscharacteristics
AT nvparfinovych kolmogorovtypeinequalitiesforhypersingularintegralswithhomogeneouscharacteristics