New Studies for Dynamic Programming and Fractional Differential Equations in Partial Modular <i>b</i>-Metric Spaces

This study explores innovative insights into the realms of dynamic programming and fractional differential equations, situated explicitly within the framework of partial modular <i>b</i>-metric spaces enriched with a binary relation <inline-formula><math xmlns="http://www.w...

Full description

Saved in:
Bibliographic Details
Main Authors: Abdurrahman Büyükkaya, Dilek Kesik, Ülkü Yeşil, Mahpeyker Öztürk
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/8/12/724
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846104610537734144
author Abdurrahman Büyükkaya
Dilek Kesik
Ülkü Yeşil
Mahpeyker Öztürk
author_facet Abdurrahman Büyükkaya
Dilek Kesik
Ülkü Yeşil
Mahpeyker Öztürk
author_sort Abdurrahman Büyükkaya
collection DOAJ
description This study explores innovative insights into the realms of dynamic programming and fractional differential equations, situated explicitly within the framework of partial modular <i>b</i>-metric spaces enriched with a binary relation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">R</mi></semantics></math></inline-formula>, proposing a novel definition for a generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>ℷ</mo><mi>C</mi></msub></semantics></math></inline-formula>-type Suzuki <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">R</mi></semantics></math></inline-formula>-contraction specific to these spaces. By doing so, we pave the way for a range of relation-theoretical common fixed-point theorems, highlighting the versatility of our approach. To illustrate the practical relevance of our findings, we present a compelling example. Ultimately, this work aims to enrich the existing academic discourse and stimulate further research and practical applications within the field.
format Article
id doaj-art-f63c0815858d4d778dcb3eaafa3aa069
institution Kabale University
issn 2504-3110
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj-art-f63c0815858d4d778dcb3eaafa3aa0692024-12-27T14:27:07ZengMDPI AGFractal and Fractional2504-31102024-12-0181272410.3390/fractalfract8120724New Studies for Dynamic Programming and Fractional Differential Equations in Partial Modular <i>b</i>-Metric SpacesAbdurrahman Büyükkaya0Dilek Kesik1Ülkü Yeşil2Mahpeyker Öztürk3Department of Mathematics, Karadeniz Technical University, 61080 Ortahisar, Trabzon, TürkiyeDepartment of Mathematics, Sakarya University, 54050 Serdivan, Sakarya, TürkiyeDepartment of Mathematical Engineering, Faculty of Chemical Metallurgical Engineering, Yildiz Technical University, 34220 Esenler, Istanbul, TürkiyeDepartment of Mathematics, Sakarya University, 54050 Serdivan, Sakarya, TürkiyeThis study explores innovative insights into the realms of dynamic programming and fractional differential equations, situated explicitly within the framework of partial modular <i>b</i>-metric spaces enriched with a binary relation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">R</mi></semantics></math></inline-formula>, proposing a novel definition for a generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>ℷ</mo><mi>C</mi></msub></semantics></math></inline-formula>-type Suzuki <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">R</mi></semantics></math></inline-formula>-contraction specific to these spaces. By doing so, we pave the way for a range of relation-theoretical common fixed-point theorems, highlighting the versatility of our approach. To illustrate the practical relevance of our findings, we present a compelling example. Ultimately, this work aims to enrich the existing academic discourse and stimulate further research and practical applications within the field.https://www.mdpi.com/2504-3110/8/12/724fixed pointpartial modular b-metricbinary relationfractional differential equationsdynamic programming
spellingShingle Abdurrahman Büyükkaya
Dilek Kesik
Ülkü Yeşil
Mahpeyker Öztürk
New Studies for Dynamic Programming and Fractional Differential Equations in Partial Modular <i>b</i>-Metric Spaces
Fractal and Fractional
fixed point
partial modular b-metric
binary relation
fractional differential equations
dynamic programming
title New Studies for Dynamic Programming and Fractional Differential Equations in Partial Modular <i>b</i>-Metric Spaces
title_full New Studies for Dynamic Programming and Fractional Differential Equations in Partial Modular <i>b</i>-Metric Spaces
title_fullStr New Studies for Dynamic Programming and Fractional Differential Equations in Partial Modular <i>b</i>-Metric Spaces
title_full_unstemmed New Studies for Dynamic Programming and Fractional Differential Equations in Partial Modular <i>b</i>-Metric Spaces
title_short New Studies for Dynamic Programming and Fractional Differential Equations in Partial Modular <i>b</i>-Metric Spaces
title_sort new studies for dynamic programming and fractional differential equations in partial modular i b i metric spaces
topic fixed point
partial modular b-metric
binary relation
fractional differential equations
dynamic programming
url https://www.mdpi.com/2504-3110/8/12/724
work_keys_str_mv AT abdurrahmanbuyukkaya newstudiesfordynamicprogrammingandfractionaldifferentialequationsinpartialmodularibimetricspaces
AT dilekkesik newstudiesfordynamicprogrammingandfractionaldifferentialequationsinpartialmodularibimetricspaces
AT ulkuyesil newstudiesfordynamicprogrammingandfractionaldifferentialequationsinpartialmodularibimetricspaces
AT mahpeykerozturk newstudiesfordynamicprogrammingandfractionaldifferentialequationsinpartialmodularibimetricspaces