Geometry of Kenmotsu Manifolds via <i>Q</i>-Curvature Tensor and Schouten–Van Kampen Connection
This research paper aims to study the <i>Q</i>-curvature tensor on Kenmotsu manifolds endowed with the Schouten–van Kampen connection. Using the <i>Q</i>-curvature tensor, whose trace is the well-known Z-tensor, we characterized Kenmotsu manifolds by introducing the notion of...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Axioms |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-1680/14/7/498 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This research paper aims to study the <i>Q</i>-curvature tensor on Kenmotsu manifolds endowed with the Schouten–van Kampen connection. Using the <i>Q</i>-curvature tensor, whose trace is the well-known Z-tensor, we characterized Kenmotsu manifolds by introducing the notion of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>Q</mi><mo>˜</mo></mover></semantics></math></inline-formula> flat and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>Q</mi><mo>˜</mo></mover></semantics></math></inline-formula> flat manifolds and novel tensor conditions, such as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mi>Q</mi><mo>˜</mo></mover><mrow><mo>(</mo><mi>ξ</mi><mo>,</mo><mi>X</mi><mo>)</mo></mrow><mover accent="true"><mi>Q</mi><mo>˜</mo></mover><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mi>Q</mi><mo>˜</mo></mover><mrow><mo>(</mo><mi>ξ</mi><mo>,</mo><mi>X</mi><mo>)</mo></mrow><mover accent="true"><mi>R</mi><mo>˜</mo></mover><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mi>Q</mi><mo>˜</mo></mover><mrow><mo>(</mo><mi>ξ</mi><mo>,</mo><mi>X</mi><mo>)</mo></mrow><mover accent="true"><mi>C</mi><mo>˜</mo></mover><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mi>Q</mi><mo>˜</mo></mover><mrow><mo>(</mo><mi>ξ</mi><mo>,</mo><mi>X</mi><mo>)</mo></mrow><mover accent="true"><mi>S</mi><mo>˜</mo></mover><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mi>Q</mi><mo>˜</mo></mover><mrow><mo>(</mo><mi>ξ</mi><mo>,</mo><mi>X</mi><mo>)</mo></mrow><mover accent="true"><mi>H</mi><mo>˜</mo></mover><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mi>Q</mi><mo>˜</mo></mover><mrow><mo>(</mo><mi>ξ</mi><mo>,</mo><mi>X</mi><mo>)</mo></mrow><mover accent="true"><mi>P</mi><mo>˜</mo></mover><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, with the Schouten–van Kampen connection. To validate some of our results, we constructed a non-trivial example of Kenmotsu manifolds endowed with the Schouten–van Kampen connection. |
|---|---|
| ISSN: | 2075-1680 |