Arginine depletion potentiates standard-of-care chemo-immunotherapy in preclinical models of high-risk neuroblastoma

Abstract Background Dysregulated amino acid metabolism creates cancer-specific vulnerabilities. Neuroblastoma tumors have dysregulated arginine metabolism that renders them sensitive to systemic arginine deprivation. Arginase therapy has been proposed as a therapeutic approach for neuroblastoma trea...

Full description

Saved in:
Bibliographic Details
Main Authors: Kimberley M. Hanssen, Jayne Murray, Ruby Pandher, Stephanie Alfred, Laura D. Gamble, Jennifer Brand, Erin Mosmann, Frances K. Kusuma, Crystal Mak, Adam Kearns, Alvin Kamili, Caroline Atkinson, Alexis Z. Minchaca, Jean Bertoldo, David S. Ziegler, Francis Mussai, Paul N. M. Cheng, Murray D. Norris, Jamie I. Fletcher, Michelle Haber
Format: Article
Language:English
Published: BMC 2025-08-01
Series:Journal of Experimental & Clinical Cancer Research
Subjects:
Online Access:https://doi.org/10.1186/s13046-025-03502-8
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background Dysregulated amino acid metabolism creates cancer-specific vulnerabilities. Neuroblastoma tumors have dysregulated arginine metabolism that renders them sensitive to systemic arginine deprivation. Arginase therapy has been proposed as a therapeutic approach for neuroblastoma treatment and has a favorable safety profile in pediatric cancer patients, however optimal therapeutic combinations remain unexplored. Methods The anti-tumor effects of BCT-100, a pegylated human arginase, were studied in neuroblastoma cell models by metabolite profiling, proteomics, and viability, clonogenicity, and protein translation assays. BCT-100 efficacy was assessed in the Th-MYCN transgenic neuroblastoma mouse model and in neuroblastoma cell line and patient-derived xenograft models. Results In vitro, depletion of arginine by BCT-100 arrested protein translation and cellular proliferation, with effects on clonogenicity enhanced in combination with standard-of-care chemotherapeutics SN-38/temozolomide and mafosfamide/topotecan. In vivo, BCT-100 treatment spared liver arginine while significantly depleting plasma and tumor arginine in Th-MYCN mice, and extended tumor latency (> 100 vs. 45.5 days) in mice pre-emptively treated at weaning. In mice with established tumors, BCT-100 prolonged tumor progression delay when combined with standard-of-care chemo- (> 90 vs. 25 days) or chemo-immuno-therapy (49.5 vs. 35.5 days). Tumor progression delay was also observed in cell line and patient-derived xenografts with BCT-100 treatment, including relapsed/refractory disease models. No increased toxicity was observed with the addition of BCT-100 to established therapies. Conclusions The arginase BCT-100 profoundly disrupts neuroblastoma growth in vitro and in vivo, an effect enhanced in combination with standard-of-care chemo-immuno-therapy. Our data supports further assessment of arginine-depleting combination therapies as a new treatment strategy for neuroblastoma.
ISSN:1756-9966