Mechanism study of KCMF1 promoting proliferation and NF-κB signaling transduction in colorectal cancer cells

Background and purpose: Colorectal cancer (CRC) is one of the major malignant tumors threatening human health worldwide, with long-term high incidence and mortality rate. Potassium channel modulatory factor 1 (KCMF1) is a member of the E3 ubiquitin ligase family. It binds to target proteins through...

Full description

Saved in:
Bibliographic Details
Main Author: WU Zhibai, XU Guiqin, ZHANG Li, YANG Zhaojuan, LIU Yun, JIAO Kun, CHEN Zehong, XU Chen, ZUO You, ZHENG Ningqian, YE Zhiqian, LIU Yongzhong
Format: Article
Language:English
Published: Editorial Office of China Oncology 2024-11-01
Series:Zhongguo aizheng zazhi
Subjects:
Online Access:http://www.china-oncology.com/fileup/1007-3639/PDF/1733904255535-970630722.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841533453864009728
author WU Zhibai, XU Guiqin, ZHANG Li, YANG Zhaojuan, LIU Yun, JIAO Kun, CHEN Zehong, XU Chen, ZUO You, ZHENG Ningqian, YE Zhiqian, LIU Yongzhong
author_facet WU Zhibai, XU Guiqin, ZHANG Li, YANG Zhaojuan, LIU Yun, JIAO Kun, CHEN Zehong, XU Chen, ZUO You, ZHENG Ningqian, YE Zhiqian, LIU Yongzhong
author_sort WU Zhibai, XU Guiqin, ZHANG Li, YANG Zhaojuan, LIU Yun, JIAO Kun, CHEN Zehong, XU Chen, ZUO You, ZHENG Ningqian, YE Zhiqian, LIU Yongzhong
collection DOAJ
description Background and purpose: Colorectal cancer (CRC) is one of the major malignant tumors threatening human health worldwide, with long-term high incidence and mortality rate. Potassium channel modulatory factor 1 (KCMF1) is a member of the E3 ubiquitin ligase family. It binds to target proteins through the RING domain and participates in the regulation of a variety of biological processes in vivo. However, the function of KCMF1 in CRC remains unclear. This study aimed to investigate the expression level of E3 ubiquitin ligase KCMF1 in colorectal tumor, and to explore the effects of KCMF1 on the proliferation of CRC cells and its underlying molecular mechanism. Methods: The The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases were used to analyze the expression level of KCMF1 in CRC tissues and adjacent tissues and the association between the KCMF1 expression and the prognosis of CRC patients. Furthermore, immunohistochemical staining was performed to detect the protein level of KCMF1 in 90 paired human CRC tissues and adjacent non-tumor tissues. Lentiviral shRNA delivery system was employed to specifically target the KCMF1 gene (shKCMF1) in HCT116 and HCT15 CRC cell lines. The effects of KCMF1 knockdown on cell proliferation, apoptosis and cell cycle distribution were assessed by methyl thiazoyl terazolium (MTT) assay, colony formation assay, Western blot and flow cytometry. Changes in the transcriptional profile in HCT116 cells upon KCMF1 knockdown were identified by RNA sequencing (RNA-Seq), and the affected signaling pathways were evaluated by bioinformatics analysis. Real-time fluorescence quantitative polymerase chain reaction (RTFQ-PCR), Western blot, luciferase reporter assay and cell immunofluorescence assay were utilized to validate the alteration of the affected signaling pathway. Results: The TCGA and GTEx databases and IHC results showed that the mRNA and protein expression levels of KCMF1 in CRC tissues were significantly upregulated compared with adjacent tissues (P<0.01). KCMF1 expression level was negatively correlated with the survival time of patients with CRC (P<0.01), and was positively associated with CRC clinical stage (P<0.05). Compared with control cells, KCMF1 knockdown significantly inhibited the proliferation of HCT116 and HCT15 cells (P<0.001), induced cell apoptosis (P<0.001), and led to cell cycle arrest in G1 phase (P<0.01). RNA-Seq analysis showed that KCMF1 was involved in the regulation of several signaling pathways, including nuclear factor-κB (NF-κB) signaling pathway. KCMF1 knockdown reduced the transcription levels of the target genes of NF-κB signaling pathway, including BCL-XL, XIAP and CIAP (P<0.05), and suppressed the expression of phosphorylated p65 and nuclear translocation of p65 (P<0.01). Meanwhile, the activity of NF-κB reporter was reduced in tumor cells upon KCMF1 knockdown (P<0.01). Conclusion: The expression of KCMF1 is significantly upregulated in human CRC tissues and positively associated with advanced clinical stage and poor prognosis. KCMF1 may promote the proliferation of CRC cells by activating the NF-κB signaling pathway. KCMF1 may be a potential new therapeutic target for CRC.
format Article
id doaj-art-f375a8f380984812ae5855133a26068e
institution Kabale University
issn 1007-3639
language English
publishDate 2024-11-01
publisher Editorial Office of China Oncology
record_format Article
series Zhongguo aizheng zazhi
spelling doaj-art-f375a8f380984812ae5855133a26068e2025-01-16T00:49:11ZengEditorial Office of China OncologyZhongguo aizheng zazhi1007-36392024-11-01341198799710.19401/j.cnki.1007-3639.2024.11.001Mechanism study of KCMF1 promoting proliferation and NF-κB signaling transduction in colorectal cancer cellsWU Zhibai, XU Guiqin, ZHANG Li, YANG Zhaojuan, LIU Yun, JIAO Kun, CHEN Zehong, XU Chen, ZUO You, ZHENG Ningqian, YE Zhiqian, LIU Yongzhong01. State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital A?liated to Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China;2. State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200032, ChinaBackground and purpose: Colorectal cancer (CRC) is one of the major malignant tumors threatening human health worldwide, with long-term high incidence and mortality rate. Potassium channel modulatory factor 1 (KCMF1) is a member of the E3 ubiquitin ligase family. It binds to target proteins through the RING domain and participates in the regulation of a variety of biological processes in vivo. However, the function of KCMF1 in CRC remains unclear. This study aimed to investigate the expression level of E3 ubiquitin ligase KCMF1 in colorectal tumor, and to explore the effects of KCMF1 on the proliferation of CRC cells and its underlying molecular mechanism. Methods: The The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases were used to analyze the expression level of KCMF1 in CRC tissues and adjacent tissues and the association between the KCMF1 expression and the prognosis of CRC patients. Furthermore, immunohistochemical staining was performed to detect the protein level of KCMF1 in 90 paired human CRC tissues and adjacent non-tumor tissues. Lentiviral shRNA delivery system was employed to specifically target the KCMF1 gene (shKCMF1) in HCT116 and HCT15 CRC cell lines. The effects of KCMF1 knockdown on cell proliferation, apoptosis and cell cycle distribution were assessed by methyl thiazoyl terazolium (MTT) assay, colony formation assay, Western blot and flow cytometry. Changes in the transcriptional profile in HCT116 cells upon KCMF1 knockdown were identified by RNA sequencing (RNA-Seq), and the affected signaling pathways were evaluated by bioinformatics analysis. Real-time fluorescence quantitative polymerase chain reaction (RTFQ-PCR), Western blot, luciferase reporter assay and cell immunofluorescence assay were utilized to validate the alteration of the affected signaling pathway. Results: The TCGA and GTEx databases and IHC results showed that the mRNA and protein expression levels of KCMF1 in CRC tissues were significantly upregulated compared with adjacent tissues (P<0.01). KCMF1 expression level was negatively correlated with the survival time of patients with CRC (P<0.01), and was positively associated with CRC clinical stage (P<0.05). Compared with control cells, KCMF1 knockdown significantly inhibited the proliferation of HCT116 and HCT15 cells (P<0.001), induced cell apoptosis (P<0.001), and led to cell cycle arrest in G1 phase (P<0.01). RNA-Seq analysis showed that KCMF1 was involved in the regulation of several signaling pathways, including nuclear factor-κB (NF-κB) signaling pathway. KCMF1 knockdown reduced the transcription levels of the target genes of NF-κB signaling pathway, including BCL-XL, XIAP and CIAP (P<0.05), and suppressed the expression of phosphorylated p65 and nuclear translocation of p65 (P<0.01). Meanwhile, the activity of NF-κB reporter was reduced in tumor cells upon KCMF1 knockdown (P<0.01). Conclusion: The expression of KCMF1 is significantly upregulated in human CRC tissues and positively associated with advanced clinical stage and poor prognosis. KCMF1 may promote the proliferation of CRC cells by activating the NF-κB signaling pathway. KCMF1 may be a potential new therapeutic target for CRC.http://www.china-oncology.com/fileup/1007-3639/PDF/1733904255535-970630722.pdf|colorectal cancer|potassium channel modulatory factor 1|apoptosis|nuclear factor-κb signaling pathway
spellingShingle WU Zhibai, XU Guiqin, ZHANG Li, YANG Zhaojuan, LIU Yun, JIAO Kun, CHEN Zehong, XU Chen, ZUO You, ZHENG Ningqian, YE Zhiqian, LIU Yongzhong
Mechanism study of KCMF1 promoting proliferation and NF-κB signaling transduction in colorectal cancer cells
Zhongguo aizheng zazhi
|colorectal cancer|potassium channel modulatory factor 1|apoptosis|nuclear factor-κb signaling pathway
title Mechanism study of KCMF1 promoting proliferation and NF-κB signaling transduction in colorectal cancer cells
title_full Mechanism study of KCMF1 promoting proliferation and NF-κB signaling transduction in colorectal cancer cells
title_fullStr Mechanism study of KCMF1 promoting proliferation and NF-κB signaling transduction in colorectal cancer cells
title_full_unstemmed Mechanism study of KCMF1 promoting proliferation and NF-κB signaling transduction in colorectal cancer cells
title_short Mechanism study of KCMF1 promoting proliferation and NF-κB signaling transduction in colorectal cancer cells
title_sort mechanism study of kcmf1 promoting proliferation and nf κb signaling transduction in colorectal cancer cells
topic |colorectal cancer|potassium channel modulatory factor 1|apoptosis|nuclear factor-κb signaling pathway
url http://www.china-oncology.com/fileup/1007-3639/PDF/1733904255535-970630722.pdf
work_keys_str_mv AT wuzhibaixuguiqinzhangliyangzhaojuanliuyunjiaokunchenzehongxuchenzuoyouzhengningqianyezhiqianliuyongzhong mechanismstudyofkcmf1promotingproliferationandnfkbsignalingtransductionincolorectalcancercells