Utilization of CO2 and recycling of methanol Residue from the refining process for production of Bio-Methanol

This study explores the synthesis of bio-methanol from biogas, focusing on the optimization of carbon dioxide (CO2) separation via alternating pressure adsorption and subsequent methanol production using varying methane (CH4) ratios. Methanol synthesis was conducted under CH4/CO2 ratios of 30/70, 50...

Full description

Saved in:
Bibliographic Details
Main Authors: Rujira Jitrwung, Kuntima Krekkeitsakul, Nattawee Teerananont, Parinya Thongyindee, Weerawat Patthaveekongka, Chinnathan Areeprasert
Format: Article
Language:English
Published: KeAi Communications Co., Ltd. 2025-03-01
Series:Carbon Resources Conversion
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2588913324000917
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study explores the synthesis of bio-methanol from biogas, focusing on the optimization of carbon dioxide (CO2) separation via alternating pressure adsorption and subsequent methanol production using varying methane (CH4) ratios. Methanol synthesis was conducted under CH4/CO2 ratios of 30/70, 50/50, and 70/30, utilizing both pure water and methanol solutions at concentrations of 10 %, 20 %, 30 %, and 40 %. The results demonstrated that increasing the CH4 ratio led to enhanced CO2 conversion, with maximum values of 42.59 % and methanol production reaching 3,850 g/day. The study further investigated the refining process of crude methanol, achieving a purity exceeding 99 % through a three-column distillation approach. Notably, the recycling of waste methanol significantly improved both methanol yield and CO2 consumption, indicating a promising pathway for sustainable bio-methanol production. Overall, this research highlights the potential of integrating biogas utilization with efficient methanol synthesis and refining processes.
ISSN:2588-9133