Parametric Analysis for 3D Modeling of Consolidation-Induced Solute Transport Using OpenFOAM

Most previous investigations for consolidation-induced solute transport models have been limited to one-dimensional studies in unsaturated porous media and lack systematic parameter sensitivity analysis. This study addresses these gaps by analyzing the effects of hydraulic conductivity (<i>K&l...

Full description

Saved in:
Bibliographic Details
Main Authors: Bolin Wang, Dong-Sheng Jeng
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/14/24/11749
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846106031327805440
author Bolin Wang
Dong-Sheng Jeng
author_facet Bolin Wang
Dong-Sheng Jeng
author_sort Bolin Wang
collection DOAJ
description Most previous investigations for consolidation-induced solute transport models have been limited to one-dimensional studies in unsaturated porous media and lack systematic parameter sensitivity analysis. This study addresses these gaps by analyzing the effects of hydraulic conductivity (<i>K</i>), shear modulus (<i>G</i>), saturation (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>S</mi><mi>r</mi></msub></semantics></math></inline-formula>), Poisson’s ratio (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula>), partitioning coefficient (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mi>d</mi></msub></semantics></math></inline-formula>), and anisotropy ratio (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mstyle scriptlevel="0" displaystyle="true"><mfrac><msub><mi>K</mi><mi>x</mi></msub><msub><mi>K</mi><mi>z</mi></msub></mfrac></mstyle></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mstyle scriptlevel="0" displaystyle="true"><mfrac><msub><mi>K</mi><mi>y</mi></msub><msub><mi>K</mi><mi>z</mi></msub></mfrac></mstyle></semantics></math></inline-formula>) on pore water pressure, soil deformation, and solute transport. The findings reveal that higher <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mi>d</mi></msub></semantics></math></inline-formula> values significantly hinder solute migration through enhanced adsorption and reduced vertical transport to deeper layers, while increasing anisotropy ratios primarily enhance horizontal migration, with their effects diminishing beyond a threshold. Additionally, a higher <i>K</i> accelerates pressure dissipation and solute movement, while a lower <i>G</i> increases soil deformation and speeds up solute migration. Saturation has a minor effect on solute concentration, with slight increases under higher <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>S</mi><mi>r</mi></msub></semantics></math></inline-formula>. The Poisson ratio significantly impacts the transport of the solute, with smaller <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula> accelerating and larger <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula> slowing migration. These insights offer valuable theoretical support for optimizing models in unsaturated porous media.
format Article
id doaj-art-f3201d310dfe43138c7657cad6f63a7e
institution Kabale University
issn 2076-3417
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj-art-f3201d310dfe43138c7657cad6f63a7e2024-12-27T14:08:15ZengMDPI AGApplied Sciences2076-34172024-12-0114241174910.3390/app142411749Parametric Analysis for 3D Modeling of Consolidation-Induced Solute Transport Using OpenFOAMBolin Wang0Dong-Sheng Jeng1School of Engineering and Built Environment, Griffith University, Gold Coast Campus, Southport, QLD 4222, AustraliaSchool of Engineering and Built Environment, Griffith University, Gold Coast Campus, Southport, QLD 4222, AustraliaMost previous investigations for consolidation-induced solute transport models have been limited to one-dimensional studies in unsaturated porous media and lack systematic parameter sensitivity analysis. This study addresses these gaps by analyzing the effects of hydraulic conductivity (<i>K</i>), shear modulus (<i>G</i>), saturation (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>S</mi><mi>r</mi></msub></semantics></math></inline-formula>), Poisson’s ratio (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula>), partitioning coefficient (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mi>d</mi></msub></semantics></math></inline-formula>), and anisotropy ratio (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mstyle scriptlevel="0" displaystyle="true"><mfrac><msub><mi>K</mi><mi>x</mi></msub><msub><mi>K</mi><mi>z</mi></msub></mfrac></mstyle></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mstyle scriptlevel="0" displaystyle="true"><mfrac><msub><mi>K</mi><mi>y</mi></msub><msub><mi>K</mi><mi>z</mi></msub></mfrac></mstyle></semantics></math></inline-formula>) on pore water pressure, soil deformation, and solute transport. The findings reveal that higher <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mi>d</mi></msub></semantics></math></inline-formula> values significantly hinder solute migration through enhanced adsorption and reduced vertical transport to deeper layers, while increasing anisotropy ratios primarily enhance horizontal migration, with their effects diminishing beyond a threshold. Additionally, a higher <i>K</i> accelerates pressure dissipation and solute movement, while a lower <i>G</i> increases soil deformation and speeds up solute migration. Saturation has a minor effect on solute concentration, with slight increases under higher <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>S</mi><mi>r</mi></msub></semantics></math></inline-formula>. The Poisson ratio significantly impacts the transport of the solute, with smaller <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula> accelerating and larger <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula> slowing migration. These insights offer valuable theoretical support for optimizing models in unsaturated porous media.https://www.mdpi.com/2076-3417/14/24/11749solute transportconsolidationOpenFOAMdeformable media
spellingShingle Bolin Wang
Dong-Sheng Jeng
Parametric Analysis for 3D Modeling of Consolidation-Induced Solute Transport Using OpenFOAM
Applied Sciences
solute transport
consolidation
OpenFOAM
deformable media
title Parametric Analysis for 3D Modeling of Consolidation-Induced Solute Transport Using OpenFOAM
title_full Parametric Analysis for 3D Modeling of Consolidation-Induced Solute Transport Using OpenFOAM
title_fullStr Parametric Analysis for 3D Modeling of Consolidation-Induced Solute Transport Using OpenFOAM
title_full_unstemmed Parametric Analysis for 3D Modeling of Consolidation-Induced Solute Transport Using OpenFOAM
title_short Parametric Analysis for 3D Modeling of Consolidation-Induced Solute Transport Using OpenFOAM
title_sort parametric analysis for 3d modeling of consolidation induced solute transport using openfoam
topic solute transport
consolidation
OpenFOAM
deformable media
url https://www.mdpi.com/2076-3417/14/24/11749
work_keys_str_mv AT bolinwang parametricanalysisfor3dmodelingofconsolidationinducedsolutetransportusingopenfoam
AT dongshengjeng parametricanalysisfor3dmodelingofconsolidationinducedsolutetransportusingopenfoam