Scaling convolutional neural networks achieves expert level seizure detection in neonatal EEG

Abstract Neonatal seizures require urgent treatment, but often go undetected without expert EEG monitoring. We have developed and validated a seizure detection model using retrospective EEG data from 332 neonates. A convolutional neural network was trained and tested on over 50,000 hours (n = 202) o...

Full description

Saved in:
Bibliographic Details
Main Authors: Robert Hogan, Sean R. Mathieson, Aurel Luca, Soraia Ventura, Sean Griffin, Geraldine B. Boylan, John M. O’Toole
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:npj Digital Medicine
Online Access:https://doi.org/10.1038/s41746-024-01416-x
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841544328921481216
author Robert Hogan
Sean R. Mathieson
Aurel Luca
Soraia Ventura
Sean Griffin
Geraldine B. Boylan
John M. O’Toole
author_facet Robert Hogan
Sean R. Mathieson
Aurel Luca
Soraia Ventura
Sean Griffin
Geraldine B. Boylan
John M. O’Toole
author_sort Robert Hogan
collection DOAJ
description Abstract Neonatal seizures require urgent treatment, but often go undetected without expert EEG monitoring. We have developed and validated a seizure detection model using retrospective EEG data from 332 neonates. A convolutional neural network was trained and tested on over 50,000 hours (n = 202) of annotated single-channel EEG containing 12,402 seizure events. This model was then validated on two independent multi-reviewer datasets (n = 51 and n = 79). Increasing data and model size improved performance: Matthews correlation coefficient (MCC) and Pearson’s correlation (r) increased by up to 50% (15%) with data (model) scaling. The largest model (21m parameters) achieved state-of-the-art on an open-access dataset (MCC = 0.764, r = 0.824, and AUC = 0.982). This model also attained expert-level performance on both validation sets, a first in this field, with no significant difference in inter-rater agreement when the model replaces an expert (∣Δ κ∣ < 0.094, p > 0.05).
format Article
id doaj-art-f30baebb107e435180eb462269de4f9f
institution Kabale University
issn 2398-6352
language English
publishDate 2025-01-01
publisher Nature Portfolio
record_format Article
series npj Digital Medicine
spelling doaj-art-f30baebb107e435180eb462269de4f9f2025-01-12T12:40:55ZengNature Portfolionpj Digital Medicine2398-63522025-01-018111110.1038/s41746-024-01416-xScaling convolutional neural networks achieves expert level seizure detection in neonatal EEGRobert Hogan0Sean R. Mathieson1Aurel Luca2Soraia Ventura3Sean Griffin4Geraldine B. Boylan5John M. O’Toole6CergenX LtdCergenX LtdCergenX LtdCergenX LtdCergenX LtdCergenX LtdCergenX LtdAbstract Neonatal seizures require urgent treatment, but often go undetected without expert EEG monitoring. We have developed and validated a seizure detection model using retrospective EEG data from 332 neonates. A convolutional neural network was trained and tested on over 50,000 hours (n = 202) of annotated single-channel EEG containing 12,402 seizure events. This model was then validated on two independent multi-reviewer datasets (n = 51 and n = 79). Increasing data and model size improved performance: Matthews correlation coefficient (MCC) and Pearson’s correlation (r) increased by up to 50% (15%) with data (model) scaling. The largest model (21m parameters) achieved state-of-the-art on an open-access dataset (MCC = 0.764, r = 0.824, and AUC = 0.982). This model also attained expert-level performance on both validation sets, a first in this field, with no significant difference in inter-rater agreement when the model replaces an expert (∣Δ κ∣ < 0.094, p > 0.05).https://doi.org/10.1038/s41746-024-01416-x
spellingShingle Robert Hogan
Sean R. Mathieson
Aurel Luca
Soraia Ventura
Sean Griffin
Geraldine B. Boylan
John M. O’Toole
Scaling convolutional neural networks achieves expert level seizure detection in neonatal EEG
npj Digital Medicine
title Scaling convolutional neural networks achieves expert level seizure detection in neonatal EEG
title_full Scaling convolutional neural networks achieves expert level seizure detection in neonatal EEG
title_fullStr Scaling convolutional neural networks achieves expert level seizure detection in neonatal EEG
title_full_unstemmed Scaling convolutional neural networks achieves expert level seizure detection in neonatal EEG
title_short Scaling convolutional neural networks achieves expert level seizure detection in neonatal EEG
title_sort scaling convolutional neural networks achieves expert level seizure detection in neonatal eeg
url https://doi.org/10.1038/s41746-024-01416-x
work_keys_str_mv AT roberthogan scalingconvolutionalneuralnetworksachievesexpertlevelseizuredetectioninneonataleeg
AT seanrmathieson scalingconvolutionalneuralnetworksachievesexpertlevelseizuredetectioninneonataleeg
AT aurelluca scalingconvolutionalneuralnetworksachievesexpertlevelseizuredetectioninneonataleeg
AT soraiaventura scalingconvolutionalneuralnetworksachievesexpertlevelseizuredetectioninneonataleeg
AT seangriffin scalingconvolutionalneuralnetworksachievesexpertlevelseizuredetectioninneonataleeg
AT geraldinebboylan scalingconvolutionalneuralnetworksachievesexpertlevelseizuredetectioninneonataleeg
AT johnmotoole scalingconvolutionalneuralnetworksachievesexpertlevelseizuredetectioninneonataleeg