Scaling convolutional neural networks achieves expert level seizure detection in neonatal EEG
Abstract Neonatal seizures require urgent treatment, but often go undetected without expert EEG monitoring. We have developed and validated a seizure detection model using retrospective EEG data from 332 neonates. A convolutional neural network was trained and tested on over 50,000 hours (n = 202) o...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | npj Digital Medicine |
Online Access: | https://doi.org/10.1038/s41746-024-01416-x |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Neonatal seizures require urgent treatment, but often go undetected without expert EEG monitoring. We have developed and validated a seizure detection model using retrospective EEG data from 332 neonates. A convolutional neural network was trained and tested on over 50,000 hours (n = 202) of annotated single-channel EEG containing 12,402 seizure events. This model was then validated on two independent multi-reviewer datasets (n = 51 and n = 79). Increasing data and model size improved performance: Matthews correlation coefficient (MCC) and Pearson’s correlation (r) increased by up to 50% (15%) with data (model) scaling. The largest model (21m parameters) achieved state-of-the-art on an open-access dataset (MCC = 0.764, r = 0.824, and AUC = 0.982). This model also attained expert-level performance on both validation sets, a first in this field, with no significant difference in inter-rater agreement when the model replaces an expert (∣Δ κ∣ < 0.094, p > 0.05). |
---|---|
ISSN: | 2398-6352 |