Re-Evaluating Deep Learning Attacks and Defenses in Cybersecurity Systems

Cybersecurity attacks pose a significant threat to the security of network systems through intrusions and illegal communications. Measuring the vulnerability of cybersecurity is crucial for refining the overall system security to further mitigate potential security risks. Machine learning (ML)-based...

Full description

Saved in:
Bibliographic Details
Main Authors: Meaad Ahmed, Qutaiba Alasad, Jiann-Shiun Yuan, Mohammed Alawad
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Big Data and Cognitive Computing
Subjects:
Online Access:https://www.mdpi.com/2504-2289/8/12/191
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cybersecurity attacks pose a significant threat to the security of network systems through intrusions and illegal communications. Measuring the vulnerability of cybersecurity is crucial for refining the overall system security to further mitigate potential security risks. Machine learning (ML)-based intrusion detection systems (IDSs) are mainly designed to detect malicious network traffic. Unfortunately, ML models have recently been demonstrated to be vulnerable to adversarial perturbation, and therefore enable potential attackers to crash the system during normal operation. Among different attacks, generative adversarial networks (GANs) have been known as one of the most powerful threats to cybersecurity systems. To address these concerns, it is important to explore new defense methods and understand the nature of different types of attacks. In this paper, we investigate four serious attacks, GAN, Zeroth-Order Optimization (ZOO), kernel density estimation (KDE), and DeepFool attacks, on cybersecurity. Deep analysis was conducted on these attacks using three different cybersecurity datasets, ADFA-LD, CSE-CICIDS2018, and CSE-CICIDS2019. Our results have shown that KDE and DeepFool attacks are stronger than GANs in terms of attack success rate and impact on system performance. To demonstrate the effectiveness of our approach, we develop a defensive model using adversarial training where the DeepFool method is used to generate adversarial examples. The model is evaluated against GAN, ZOO, KDE, and DeepFool attacks to assess the level of system protection against adversarial perturbations. The experiment was conducted by leveraging a deep learning model as a classifier with the three aforementioned datasets. The results indicate that the proposed defensive model refines the resilience of the system and mitigates the presented serious attacks.
ISSN:2504-2289