Neuronal Plasticity-Dependent Paradigm and Young Plasma Treatment Prevent Synaptic and Motor Deficit in a Rett Syndrome Mouse Model

Classical Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the <i>MECP2</i> gene, resulting in a devastating phenotype associated with a lack of gene expression control. Mouse models lacking <i>Mecp2</i> expression with an RTT-like phenotype have be...

Full description

Saved in:
Bibliographic Details
Main Authors: Sofía Espinoza, Camila Navia, Rodrigo F. Torres, Nuria Llontop, Verónica Valladares, Cristina Silva, Ariel Vivero, Exequiel Novoa-Padilla, Jessica Soto-Covasich, Jessica Mella, Ricardo Kouro, Sharin Valdivia, Marco Pérez-Bustamante, Patricia Ojeda-Provoste, Nancy Pineda, Sonja Buvinic, Dasfne Lee-Liu, Juan Pablo Henríquez, Bredford Kerr
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Biomolecules
Subjects:
Online Access:https://www.mdpi.com/2218-273X/15/5/748
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Classical Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the <i>MECP2</i> gene, resulting in a devastating phenotype associated with a lack of gene expression control. Mouse models lacking <i>Mecp2</i> expression with an RTT-like phenotype have been developed to advance therapeutic alternatives. Environmental enrichment (EE) attenuates RTT symptoms in patients and mouse models. However, the mechanisms underlying the effects of EE on RTT have not been fully elucidated. We housed male hemizygous <i>Mecp2</i>-null (<i>Mecp2<sup>-/y</sup></i>) and wild-type mice in specially conditioned cages to enhance sensory, cognitive, social, and motor stimulation. EE attenuated the progression of the RTT phenotype by preserving neuronal cytoarchitecture and neural plasticity markers. Furthermore, EE ameliorated defects in neuromuscular junction organization and restored the motor deficit of <i>Mecp2<sup>-/y</sup></i> mice. Treatment with plasma from young WT mice was used to assess whether the increased activity could modify plasma components, mimicking the benefits of EE in <i>Mecp2<sup>-/y</sup></i>. Plasma treatment attenuated the RTT phenotype by improving neurological markers, suggesting that peripheral signals of mice with normal motor function have the potential to reactivate dormant neurodevelopment in RTT mice. These findings demonstrate how EE and treatment with young plasma ameliorate RTT-like phenotype in mice, opening new therapeutical approaches for RTT patients.
ISSN:2218-273X