A Ramsey-Theory-Based Approach to the Dynamics of Systems of Material Points
We propose a Ramsey-theory-based approach for the analysis of the behavior of isolated mechanical systems containing interacting particles. The total momentum of the system in the frame of the center of masses is zero. The mechanical system is described by a Ramsey-theory-based, bi-colored, complete...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-11-01
|
| Series: | Dynamics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2673-8716/4/4/43 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1846105033533292544 |
|---|---|
| author | Edward Bormashenko Nir Shvalb |
| author_facet | Edward Bormashenko Nir Shvalb |
| author_sort | Edward Bormashenko |
| collection | DOAJ |
| description | We propose a Ramsey-theory-based approach for the analysis of the behavior of isolated mechanical systems containing interacting particles. The total momentum of the system in the frame of the center of masses is zero. The mechanical system is described by a Ramsey-theory-based, bi-colored, complete graph. Vectors of momenta of the particles <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>p</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>i</mi></mrow></msub><mo> </mo></mrow></semantics></math></inline-formula> serve as the vertices of the graph. We start from the graph representing the system in the frame of the center of masses, where the momenta of the particles in this system are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>p</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>c</mi><mi>m</mi><mi>i</mi></mrow></msub><mo>.</mo></mrow></semantics></math></inline-formula> If <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>p</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>c</mi><mi>m</mi><mi>i</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>·</mo><msub><mrow><mover accent="true"><mrow><mi>p</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>c</mi><mi>m</mi><mi>j</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>≥</mo><mn>0</mn></mrow></semantics></math></inline-formula> is true, the vectors of momenta of the particles numbered <i>i</i> and <i>j</i> are connected with a red link; if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>p</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>c</mi><mi>m</mi><mi>i</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>·</mo><msub><mrow><mover accent="true"><mrow><mi>p</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>c</mi><mi>m</mi><mi>j</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo><</mo><mn>0</mn></mrow></semantics></math></inline-formula> takes place, the vectors of momenta are connected with a green link. Thus, the complete, bi-colored graph emerges. Considering an isolated system built of six interacting particles, according to the Ramsey theorem, the graph inevitably comprises at least one monochromatic triangle. The coloring procedure is invariant relative to the rotations/translations of frames; thus, the graph representing the system contains at least one monochromatic triangle in any of the frames emerging from the rotation/translation of the original frame. This gives rise to a novel kind of mechanical invariant. Similar coloring is introduced for the angular momenta of the particles. However, the coloring procedure is sensitive to Galilean/Lorenz transformations. Extensions of the suggested approach are discussed. |
| format | Article |
| id | doaj-art-f078720ec83c4588b9532d137ae5d0b0 |
| institution | Kabale University |
| issn | 2673-8716 |
| language | English |
| publishDate | 2024-11-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Dynamics |
| spelling | doaj-art-f078720ec83c4588b9532d137ae5d0b02024-12-27T14:21:59ZengMDPI AGDynamics2673-87162024-11-014484585410.3390/dynamics4040043A Ramsey-Theory-Based Approach to the Dynamics of Systems of Material PointsEdward Bormashenko0Nir Shvalb1Engineering Faculty, Chemical Engineering Department, Ariel University, P.O. Box 3, Ariel 407000, IsraelDepartment of Industrial Engineering and Management, Engineering Faculty, Ariel University, P.O. Box 3, Ariel 407000, IsraelWe propose a Ramsey-theory-based approach for the analysis of the behavior of isolated mechanical systems containing interacting particles. The total momentum of the system in the frame of the center of masses is zero. The mechanical system is described by a Ramsey-theory-based, bi-colored, complete graph. Vectors of momenta of the particles <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>p</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>i</mi></mrow></msub><mo> </mo></mrow></semantics></math></inline-formula> serve as the vertices of the graph. We start from the graph representing the system in the frame of the center of masses, where the momenta of the particles in this system are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>p</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>c</mi><mi>m</mi><mi>i</mi></mrow></msub><mo>.</mo></mrow></semantics></math></inline-formula> If <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>p</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>c</mi><mi>m</mi><mi>i</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>·</mo><msub><mrow><mover accent="true"><mrow><mi>p</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>c</mi><mi>m</mi><mi>j</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>≥</mo><mn>0</mn></mrow></semantics></math></inline-formula> is true, the vectors of momenta of the particles numbered <i>i</i> and <i>j</i> are connected with a red link; if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>p</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>c</mi><mi>m</mi><mi>i</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>·</mo><msub><mrow><mover accent="true"><mrow><mi>p</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>c</mi><mi>m</mi><mi>j</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo><</mo><mn>0</mn></mrow></semantics></math></inline-formula> takes place, the vectors of momenta are connected with a green link. Thus, the complete, bi-colored graph emerges. Considering an isolated system built of six interacting particles, according to the Ramsey theorem, the graph inevitably comprises at least one monochromatic triangle. The coloring procedure is invariant relative to the rotations/translations of frames; thus, the graph representing the system contains at least one monochromatic triangle in any of the frames emerging from the rotation/translation of the original frame. This gives rise to a novel kind of mechanical invariant. Similar coloring is introduced for the angular momenta of the particles. However, the coloring procedure is sensitive to Galilean/Lorenz transformations. Extensions of the suggested approach are discussed.https://www.mdpi.com/2673-8716/4/4/43isolated systeminteracting particlesinvariantmomentumangular momentumcomplete graph |
| spellingShingle | Edward Bormashenko Nir Shvalb A Ramsey-Theory-Based Approach to the Dynamics of Systems of Material Points Dynamics isolated system interacting particles invariant momentum angular momentum complete graph |
| title | A Ramsey-Theory-Based Approach to the Dynamics of Systems of Material Points |
| title_full | A Ramsey-Theory-Based Approach to the Dynamics of Systems of Material Points |
| title_fullStr | A Ramsey-Theory-Based Approach to the Dynamics of Systems of Material Points |
| title_full_unstemmed | A Ramsey-Theory-Based Approach to the Dynamics of Systems of Material Points |
| title_short | A Ramsey-Theory-Based Approach to the Dynamics of Systems of Material Points |
| title_sort | ramsey theory based approach to the dynamics of systems of material points |
| topic | isolated system interacting particles invariant momentum angular momentum complete graph |
| url | https://www.mdpi.com/2673-8716/4/4/43 |
| work_keys_str_mv | AT edwardbormashenko aramseytheorybasedapproachtothedynamicsofsystemsofmaterialpoints AT nirshvalb aramseytheorybasedapproachtothedynamicsofsystemsofmaterialpoints AT edwardbormashenko ramseytheorybasedapproachtothedynamicsofsystemsofmaterialpoints AT nirshvalb ramseytheorybasedapproachtothedynamicsofsystemsofmaterialpoints |