A Ramsey-Theory-Based Approach to the Dynamics of Systems of Material Points

We propose a Ramsey-theory-based approach for the analysis of the behavior of isolated mechanical systems containing interacting particles. The total momentum of the system in the frame of the center of masses is zero. The mechanical system is described by a Ramsey-theory-based, bi-colored, complete...

Full description

Saved in:
Bibliographic Details
Main Authors: Edward Bormashenko, Nir Shvalb
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Dynamics
Subjects:
Online Access:https://www.mdpi.com/2673-8716/4/4/43
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846105033533292544
author Edward Bormashenko
Nir Shvalb
author_facet Edward Bormashenko
Nir Shvalb
author_sort Edward Bormashenko
collection DOAJ
description We propose a Ramsey-theory-based approach for the analysis of the behavior of isolated mechanical systems containing interacting particles. The total momentum of the system in the frame of the center of masses is zero. The mechanical system is described by a Ramsey-theory-based, bi-colored, complete graph. Vectors of momenta of the particles <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>p</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>i</mi></mrow></msub><mo> </mo></mrow></semantics></math></inline-formula> serve as the vertices of the graph. We start from the graph representing the system in the frame of the center of masses, where the momenta of the particles in this system are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>p</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>c</mi><mi>m</mi><mi>i</mi></mrow></msub><mo>.</mo></mrow></semantics></math></inline-formula> If <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>p</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>c</mi><mi>m</mi><mi>i</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>·</mo><msub><mrow><mover accent="true"><mrow><mi>p</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>c</mi><mi>m</mi><mi>j</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>≥</mo><mn>0</mn></mrow></semantics></math></inline-formula> is true, the vectors of momenta of the particles numbered <i>i</i> and <i>j</i> are connected with a red link; if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>p</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>c</mi><mi>m</mi><mi>i</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>·</mo><msub><mrow><mover accent="true"><mrow><mi>p</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>c</mi><mi>m</mi><mi>j</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo><</mo><mn>0</mn></mrow></semantics></math></inline-formula> takes place, the vectors of momenta are connected with a green link. Thus, the complete, bi-colored graph emerges. Considering an isolated system built of six interacting particles, according to the Ramsey theorem, the graph inevitably comprises at least one monochromatic triangle. The coloring procedure is invariant relative to the rotations/translations of frames; thus, the graph representing the system contains at least one monochromatic triangle in any of the frames emerging from the rotation/translation of the original frame. This gives rise to a novel kind of mechanical invariant. Similar coloring is introduced for the angular momenta of the particles. However, the coloring procedure is sensitive to Galilean/Lorenz transformations. Extensions of the suggested approach are discussed.
format Article
id doaj-art-f078720ec83c4588b9532d137ae5d0b0
institution Kabale University
issn 2673-8716
language English
publishDate 2024-11-01
publisher MDPI AG
record_format Article
series Dynamics
spelling doaj-art-f078720ec83c4588b9532d137ae5d0b02024-12-27T14:21:59ZengMDPI AGDynamics2673-87162024-11-014484585410.3390/dynamics4040043A Ramsey-Theory-Based Approach to the Dynamics of Systems of Material PointsEdward Bormashenko0Nir Shvalb1Engineering Faculty, Chemical Engineering Department, Ariel University, P.O. Box 3, Ariel 407000, IsraelDepartment of Industrial Engineering and Management, Engineering Faculty, Ariel University, P.O. Box 3, Ariel 407000, IsraelWe propose a Ramsey-theory-based approach for the analysis of the behavior of isolated mechanical systems containing interacting particles. The total momentum of the system in the frame of the center of masses is zero. The mechanical system is described by a Ramsey-theory-based, bi-colored, complete graph. Vectors of momenta of the particles <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>p</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>i</mi></mrow></msub><mo> </mo></mrow></semantics></math></inline-formula> serve as the vertices of the graph. We start from the graph representing the system in the frame of the center of masses, where the momenta of the particles in this system are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mover accent="true"><mrow><mi>p</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>c</mi><mi>m</mi><mi>i</mi></mrow></msub><mo>.</mo></mrow></semantics></math></inline-formula> If <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>p</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>c</mi><mi>m</mi><mi>i</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>·</mo><msub><mrow><mover accent="true"><mrow><mi>p</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>c</mi><mi>m</mi><mi>j</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>≥</mo><mn>0</mn></mrow></semantics></math></inline-formula> is true, the vectors of momenta of the particles numbered <i>i</i> and <i>j</i> are connected with a red link; if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>p</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>c</mi><mi>m</mi><mi>i</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>·</mo><msub><mrow><mover accent="true"><mrow><mi>p</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>c</mi><mi>m</mi><mi>j</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo><</mo><mn>0</mn></mrow></semantics></math></inline-formula> takes place, the vectors of momenta are connected with a green link. Thus, the complete, bi-colored graph emerges. Considering an isolated system built of six interacting particles, according to the Ramsey theorem, the graph inevitably comprises at least one monochromatic triangle. The coloring procedure is invariant relative to the rotations/translations of frames; thus, the graph representing the system contains at least one monochromatic triangle in any of the frames emerging from the rotation/translation of the original frame. This gives rise to a novel kind of mechanical invariant. Similar coloring is introduced for the angular momenta of the particles. However, the coloring procedure is sensitive to Galilean/Lorenz transformations. Extensions of the suggested approach are discussed.https://www.mdpi.com/2673-8716/4/4/43isolated systeminteracting particlesinvariantmomentumangular momentumcomplete graph
spellingShingle Edward Bormashenko
Nir Shvalb
A Ramsey-Theory-Based Approach to the Dynamics of Systems of Material Points
Dynamics
isolated system
interacting particles
invariant
momentum
angular momentum
complete graph
title A Ramsey-Theory-Based Approach to the Dynamics of Systems of Material Points
title_full A Ramsey-Theory-Based Approach to the Dynamics of Systems of Material Points
title_fullStr A Ramsey-Theory-Based Approach to the Dynamics of Systems of Material Points
title_full_unstemmed A Ramsey-Theory-Based Approach to the Dynamics of Systems of Material Points
title_short A Ramsey-Theory-Based Approach to the Dynamics of Systems of Material Points
title_sort ramsey theory based approach to the dynamics of systems of material points
topic isolated system
interacting particles
invariant
momentum
angular momentum
complete graph
url https://www.mdpi.com/2673-8716/4/4/43
work_keys_str_mv AT edwardbormashenko aramseytheorybasedapproachtothedynamicsofsystemsofmaterialpoints
AT nirshvalb aramseytheorybasedapproachtothedynamicsofsystemsofmaterialpoints
AT edwardbormashenko ramseytheorybasedapproachtothedynamicsofsystemsofmaterialpoints
AT nirshvalb ramseytheorybasedapproachtothedynamicsofsystemsofmaterialpoints