A reconfigurable multi-channel on-chip photonic filter for programmable optical frequency division
Recent advancements have broadened the application of photon filters based on Bragg gratings within optical communication networks and optical input/output interfaces. Traditional gratings, however, suffer from a fixed refractive index modulation distribution once manufactured, constraining their ad...
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
De Gruyter
2025-06-01
|
| Series: | Nanophotonics |
| Subjects: | |
| Online Access: | https://doi.org/10.1515/nanoph-2025-0119 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Recent advancements have broadened the application of photon filters based on Bragg gratings within optical communication networks and optical input/output interfaces. Traditional gratings, however, suffer from a fixed refractive index modulation distribution once manufactured, constraining their adaptability and flexibility. This study introduces a reconfigurable multi-channel photon filter on a silicon nitride on insulator platform. The filter incorporates an equivalent linearly chirped four-phase-shifted sampled Bragg grating with micro-heaters to enable thermo-optic tuning, facilitating programmable control over transmission spectral features. Experimental outcomes indicate the filter’s capability to seamlessly transition among single, dual, and quad-band configurations, as well as a band-stop mode, with independent tuning of each band. Moreover, optical frequency division multiplexing experiments using a 50 GHz semiconductor mode-locked laser have affirmed the filter’s tunability. In quad-band mode, band separations of 50, 100, and 150 GHz are achievable; in dual and single-band modes, band intervals extend from 150 to 250 GHz, allowing for precise single-wavelength selection. Featuring high tunability, minimal insertion losses, and superior signal side-mode suppression ratio, this filter structure supports the integration of programmable photonic devices into space optical communications, photonic integrated networks, and elastic optical networks. |
|---|---|
| ISSN: | 2192-8614 |