Effect of the model’s geometry in fretting fatigue life prediction
This paper analyses the influence that the type of geometry used to obtain the stress/strain fields in a cylindrical contact has on fretting fatigue life predictions. In addition, this work considers the effect that the fatigue crack shape assumed has on these fretting fatigue life predictions. Th...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Gruppo Italiano Frattura
2014-10-01
|
Series: | Fracture and Structural Integrity |
Subjects: | |
Online Access: | http://www.gruppofrattura.it/pdf/rivista/numero30/numero_30_art_15.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper analyses the influence that the type of geometry used to obtain the stress/strain fields in
a cylindrical contact has on fretting fatigue life predictions. In addition, this work considers the effect that the
fatigue crack shape assumed has on these fretting fatigue life predictions. The strain/stress fields are calculated
using a series of finite elements models that consider the following three types of behaviour: plane stress, plane
strain (2D geometries) and 3D. Each of these models gives a different crack initiation life and a different
evolution of the stress intensity factor (SIF), which are calculated using the weight function method. These
models therefore provide different fretting fatigue life predictions. Finally, the lives obtained using the
numerical models are compared with experimental lives. |
---|---|
ISSN: | 1971-8993 1971-8993 |