ITER-relevant 600 s steady-state extraction of negative hydrogen ions at the test facility ELISE
The neutral beam heating system for the future international fusion experiment ITER will be based on radio-frequency driven ion sources delivering a large (≈1 × 2 m ^2 ) and homogeneous negative hydrogen or deuterium ion beam of several ten Amperes for several hundred seconds. The size scaling exper...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IOP Publishing
2024-01-01
|
| Series: | Nuclear Fusion |
| Subjects: | |
| Online Access: | https://doi.org/10.1088/1741-4326/ad8e74 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The neutral beam heating system for the future international fusion experiment ITER will be based on radio-frequency driven ion sources delivering a large (≈1 × 2 m ^2 ) and homogeneous negative hydrogen or deuterium ion beam of several ten Amperes for several hundred seconds. The size scaling experiment ELISE (Extraction from a Large Ion Source Experiment) is an integral part of the R&D road-map towards the ITER neutral beam heating system. Recently, 90% of the ITER target for the extracted current density was achieved in hydrogen for 600 s, increasing the pulse length over which such current densities can be achieved by a factor of more than ten. For ten second beam pulses the ITER target current density was achieved. These breakthrough results are made possible by using a steady-state capable high-voltage power supply together with an improved version of internal potential rods and a modified topology of the magnetic filter field. |
|---|---|
| ISSN: | 0029-5515 |