Deep Penetration of Shear Deformation in Ferritic Stainless Steel via Differential Speed Rolling Considering Contact Condition

In order to effectively process crystal-structured materials like metal, knowledge of the working slip system during plastic deformation is necessary. Rolling is a widely utilized industrial processing method, and understanding its inherent characteristics can optimize the process and help achieve t...

Full description

Saved in:
Bibliographic Details
Main Authors: Siti Fatimah, Warda Bahanan, Jee-Hyun Kang, I Putu Widiantara, Young Gun Ko
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/1/155
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841549470028791808
author Siti Fatimah
Warda Bahanan
Jee-Hyun Kang
I Putu Widiantara
Young Gun Ko
author_facet Siti Fatimah
Warda Bahanan
Jee-Hyun Kang
I Putu Widiantara
Young Gun Ko
author_sort Siti Fatimah
collection DOAJ
description In order to effectively process crystal-structured materials like metal, knowledge of the working slip system during plastic deformation is necessary. Rolling is a widely utilized industrial processing method, and understanding its inherent characteristics can optimize the process and help achieve the desired microstructure and texture. One key aspect worth investigating is how shear deformation penetrates through the material thickness, particularly in relation to contact conditions. Analyzing slip system activity provides valuable insights into the deep penetration of shear deformation. This is achieved by examining orientation gradients derived from inverse pole figure maps obtained through electron backscatter diffraction. The rotation axis is extracted and compared with that obtained from calculation using simple first-order self-consistent formulation. The analysis was carried out on grains with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced open="{" close="}" separators="|"><mrow><mn>001</mn></mrow></mfenced><mo><</mo><mn>1</mn><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="false">¯</mo></mover><mn>0</mn><mo>></mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced open="{" close="}" separators="|"><mrow><mn>001</mn></mrow></mfenced><mo><</mo><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="false">¯</mo></mover><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="false">¯</mo></mover><mn>0</mn><mo>></mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced open="{" close="}" separators="|"><mrow><mn>111</mn></mrow></mfenced><mo><</mo><mn>1</mn><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="false">¯</mo></mover><mn>0</mn><mo>></mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced open="{" close="}" separators="|"><mrow><mn>111</mn></mrow></mfenced><mo><</mo><mn>1</mn><mover accent="true"><mrow><mn>2</mn></mrow><mo stretchy="false">¯</mo></mover><mn>1</mn><mo>></mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced open="{" close="}" separators="|"><mrow><mn>111</mn></mrow></mfenced><mo><</mo><mn>0</mn><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="false">¯</mo></mover><mn>1</mn><mo>></mo></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced open="{" close="}" separators="|"><mrow><mn>111</mn></mrow></mfenced><mo><</mo><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="false">¯</mo></mover><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="false">¯</mo></mover><mn>2</mn><mo>></mo></mrow></semantics></math></inline-formula> to see the activity of slip systems of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced open="{" close="}" separators="|"><mrow><mn>112</mn></mrow></mfenced><mo><</mo><mn>111</mn><mo>></mo></mrow></semantics></math></inline-formula> when plane strain or plane + shear mode is in operation. The rotation axis from the experiment is in agreement with that from the calculation, which confirmed the activity of the well-known <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced open="{" close="}" separators="|"><mrow><mn>112</mn></mrow></mfenced><mo><</mo><mn>111</mn><mo>></mo></mrow></semantics></math></inline-formula> slip systems. It was found that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced open="{" close="}" separators="|"><mrow><mn>112</mn></mrow></mfenced><mo><</mo><mn>111</mn><mo>></mo></mrow></semantics></math></inline-formula> was active in solo in grain with {111}//ND orientation along the γ-fiber during the early stage of differential speed rolling (DSR). Furthermore, it was revealed that the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced open="{" close="}" separators="|"><mrow><mn>112</mn></mrow></mfenced><mo><</mo><mn>111</mn><mo>></mo></mrow></semantics></math></inline-formula> slip system was found active when shear deformation mode was in operation at the center of the sheet, which can only be found in the case of a sample with no lubrication. Conclusion: The current study shows that deep penetration was achieved under contact conditions where no lubrication was used during DSR by revealing the activity of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced open="{" close="}" separators="|"><mrow><mn>112</mn></mrow></mfenced><mo><</mo><mn>111</mn><mo>></mo></mrow></semantics></math></inline-formula> slip system under the shear mode of deformation.
format Article
id doaj-art-ee6e1720b353490bb2df02bc409f324f
institution Kabale University
issn 2076-3417
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj-art-ee6e1720b353490bb2df02bc409f324f2025-01-10T13:14:39ZengMDPI AGApplied Sciences2076-34172024-12-0115115510.3390/app15010155Deep Penetration of Shear Deformation in Ferritic Stainless Steel via Differential Speed Rolling Considering Contact ConditionSiti Fatimah0Warda Bahanan1Jee-Hyun Kang2I Putu Widiantara3Young Gun Ko4Plasticity Control and Mechanical Modeling Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of KoreaPlasticity Control and Mechanical Modeling Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of KoreaPlasticity Control and Mechanical Modeling Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of KoreaPlasticity Control and Mechanical Modeling Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of KoreaPlasticity Control and Mechanical Modeling Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of KoreaIn order to effectively process crystal-structured materials like metal, knowledge of the working slip system during plastic deformation is necessary. Rolling is a widely utilized industrial processing method, and understanding its inherent characteristics can optimize the process and help achieve the desired microstructure and texture. One key aspect worth investigating is how shear deformation penetrates through the material thickness, particularly in relation to contact conditions. Analyzing slip system activity provides valuable insights into the deep penetration of shear deformation. This is achieved by examining orientation gradients derived from inverse pole figure maps obtained through electron backscatter diffraction. The rotation axis is extracted and compared with that obtained from calculation using simple first-order self-consistent formulation. The analysis was carried out on grains with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced open="{" close="}" separators="|"><mrow><mn>001</mn></mrow></mfenced><mo><</mo><mn>1</mn><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="false">¯</mo></mover><mn>0</mn><mo>></mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced open="{" close="}" separators="|"><mrow><mn>001</mn></mrow></mfenced><mo><</mo><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="false">¯</mo></mover><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="false">¯</mo></mover><mn>0</mn><mo>></mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced open="{" close="}" separators="|"><mrow><mn>111</mn></mrow></mfenced><mo><</mo><mn>1</mn><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="false">¯</mo></mover><mn>0</mn><mo>></mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced open="{" close="}" separators="|"><mrow><mn>111</mn></mrow></mfenced><mo><</mo><mn>1</mn><mover accent="true"><mrow><mn>2</mn></mrow><mo stretchy="false">¯</mo></mover><mn>1</mn><mo>></mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced open="{" close="}" separators="|"><mrow><mn>111</mn></mrow></mfenced><mo><</mo><mn>0</mn><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="false">¯</mo></mover><mn>1</mn><mo>></mo></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced open="{" close="}" separators="|"><mrow><mn>111</mn></mrow></mfenced><mo><</mo><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="false">¯</mo></mover><mover accent="true"><mrow><mn>1</mn></mrow><mo stretchy="false">¯</mo></mover><mn>2</mn><mo>></mo></mrow></semantics></math></inline-formula> to see the activity of slip systems of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced open="{" close="}" separators="|"><mrow><mn>112</mn></mrow></mfenced><mo><</mo><mn>111</mn><mo>></mo></mrow></semantics></math></inline-formula> when plane strain or plane + shear mode is in operation. The rotation axis from the experiment is in agreement with that from the calculation, which confirmed the activity of the well-known <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced open="{" close="}" separators="|"><mrow><mn>112</mn></mrow></mfenced><mo><</mo><mn>111</mn><mo>></mo></mrow></semantics></math></inline-formula> slip systems. It was found that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced open="{" close="}" separators="|"><mrow><mn>112</mn></mrow></mfenced><mo><</mo><mn>111</mn><mo>></mo></mrow></semantics></math></inline-formula> was active in solo in grain with {111}//ND orientation along the γ-fiber during the early stage of differential speed rolling (DSR). Furthermore, it was revealed that the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced open="{" close="}" separators="|"><mrow><mn>112</mn></mrow></mfenced><mo><</mo><mn>111</mn><mo>></mo></mrow></semantics></math></inline-formula> slip system was found active when shear deformation mode was in operation at the center of the sheet, which can only be found in the case of a sample with no lubrication. Conclusion: The current study shows that deep penetration was achieved under contact conditions where no lubrication was used during DSR by revealing the activity of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced open="{" close="}" separators="|"><mrow><mn>112</mn></mrow></mfenced><mo><</mo><mn>111</mn><mo>></mo></mrow></semantics></math></inline-formula> slip system under the shear mode of deformation.https://www.mdpi.com/2076-3417/15/1/155orientation gradientshearslip systemsteel
spellingShingle Siti Fatimah
Warda Bahanan
Jee-Hyun Kang
I Putu Widiantara
Young Gun Ko
Deep Penetration of Shear Deformation in Ferritic Stainless Steel via Differential Speed Rolling Considering Contact Condition
Applied Sciences
orientation gradient
shear
slip system
steel
title Deep Penetration of Shear Deformation in Ferritic Stainless Steel via Differential Speed Rolling Considering Contact Condition
title_full Deep Penetration of Shear Deformation in Ferritic Stainless Steel via Differential Speed Rolling Considering Contact Condition
title_fullStr Deep Penetration of Shear Deformation in Ferritic Stainless Steel via Differential Speed Rolling Considering Contact Condition
title_full_unstemmed Deep Penetration of Shear Deformation in Ferritic Stainless Steel via Differential Speed Rolling Considering Contact Condition
title_short Deep Penetration of Shear Deformation in Ferritic Stainless Steel via Differential Speed Rolling Considering Contact Condition
title_sort deep penetration of shear deformation in ferritic stainless steel via differential speed rolling considering contact condition
topic orientation gradient
shear
slip system
steel
url https://www.mdpi.com/2076-3417/15/1/155
work_keys_str_mv AT sitifatimah deeppenetrationofsheardeformationinferriticstainlesssteelviadifferentialspeedrollingconsideringcontactcondition
AT wardabahanan deeppenetrationofsheardeformationinferriticstainlesssteelviadifferentialspeedrollingconsideringcontactcondition
AT jeehyunkang deeppenetrationofsheardeformationinferriticstainlesssteelviadifferentialspeedrollingconsideringcontactcondition
AT iputuwidiantara deeppenetrationofsheardeformationinferriticstainlesssteelviadifferentialspeedrollingconsideringcontactcondition
AT younggunko deeppenetrationofsheardeformationinferriticstainlesssteelviadifferentialspeedrollingconsideringcontactcondition