Detection method of LDoS attacks based on combination of ANN & KPCA
Low-rate denial-of-service (LDoS) attack is a new type of attack mode for TCP protocol.Characteristics of low average rate and strong concealment make it difficult for detection by traditional DoS detecting methods.According to characteristics of LDoS attacks,a new LDoS queue future was proposed fro...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | zho |
Published: |
Editorial Department of Journal on Communications
2018-05-01
|
Series: | Tongxin xuebao |
Subjects: | |
Online Access: | http://www.joconline.com.cn/zh/article/doi/10.11959/j.issn.1000-436x.2018073/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Low-rate denial-of-service (LDoS) attack is a new type of attack mode for TCP protocol.Characteristics of low average rate and strong concealment make it difficult for detection by traditional DoS detecting methods.According to characteristics of LDoS attacks,a new LDoS queue future was proposed from the router queue,the kernel principal component analysis (KPCA) method was combined with neural network,and a new method was present to detect LDoS attacks.The method reduced the dimensionality of queue feature via KPCA algorithm and made the reduced dimension data as the inputs of neural network.For the good sell-learning ability,BP neural network could generate a great LDoS attack classifier and this classifier was used to detect the attack.Experiment results show that the proposed approach has the characteristics of effectiveness and low algorithm complexity,which helps the design of high performance router. |
---|---|
ISSN: | 1000-436X |