A framework for predicting zoonotic hosts using pseudo-absences: the case of Echinococcus multilocularis
Identifying the host range of zoonotic parasites is challenging due to limited data and sampling biases. In particular, while more information exists for susceptible hosts, data on resistant species is extremely scant. Echinococcus multilocularis (Leuckart, 1863) (Cestoda: Taeniidae) is the causativ...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-12-01
|
| Series: | Ecological Informatics |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S1574954125003048 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849233619570130944 |
|---|---|
| author | Andrea Simoncini Dimitri Giunchi Marta Marcucci Alessandro Massolo |
| author_facet | Andrea Simoncini Dimitri Giunchi Marta Marcucci Alessandro Massolo |
| author_sort | Andrea Simoncini |
| collection | DOAJ |
| description | Identifying the host range of zoonotic parasites is challenging due to limited data and sampling biases. In particular, while more information exists for susceptible hosts, data on resistant species is extremely scant. Echinococcus multilocularis (Leuckart, 1863) (Cestoda: Taeniidae) is the causative agent of alveolar echinococcosis, one of the most significant food-borne zoonoses worldwide. Using data on susceptibility and competence of Holarctic cricetid and murid rodents, key intermediate hosts for E. multilocularis, we developed models to predict the likelihood of infection for any rodent species in the Holarctic. These models incorporated morphological and ecological characteristics and employed two approaches: Generalized Linear Models (GLM) and Presence-Unlabeled Learning (PU-L), a machine learning technique. To train the models, we defined pseudo-absences based on the bias in research effort. We compared the two algorithms and selected GLM as the most effective, using it to map potentially susceptible rodent species across phylogeny and geographic space. Predictions identified several potentially unreported hosts, suggesting that the current understanding of E. multilocularis host distribution may underestimate the true risk. The predicted richness of intermediate hosts peaked in Central-Eastern Europe, Western North America and Central Asia, while the ratio of predicted hosts to total rodent richness was highest in the northern latitudes and the Tibetan Plateau. The average temperature in the geographic range and range size emerged as the strongest predictors of host susceptibility. The workflow demonstrates promise for application to other host-parasite systems with unknown host ranges. |
| format | Article |
| id | doaj-art-ebf8dae65c7747d48eecf1cebfc331f4 |
| institution | Kabale University |
| issn | 1574-9541 |
| language | English |
| publishDate | 2025-12-01 |
| publisher | Elsevier |
| record_format | Article |
| series | Ecological Informatics |
| spelling | doaj-art-ebf8dae65c7747d48eecf1cebfc331f42025-08-20T05:05:37ZengElsevierEcological Informatics1574-95412025-12-019010329510.1016/j.ecoinf.2025.103295A framework for predicting zoonotic hosts using pseudo-absences: the case of Echinococcus multilocularisAndrea Simoncini0Dimitri Giunchi1Marta Marcucci2Alessandro Massolo3Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, 20133 Milano, ItalyDipartimento di Biologia, Università di Pisa, 56126 Pisa, ItalyDipartimento di Biologia, Università di Pisa, 56126 Pisa, ItalyDipartimento di Biologia, Università di Pisa, 56126 Pisa, Italy; Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada; UMR CNRS 6249 Chrono-environnement, Université Franche-Comté, 25030 Besançon, France; Corresponding author at: Dipartimento di Biologia, Università di Pisa, via Volta 6, 56126 Pisa, PI, Italy.Identifying the host range of zoonotic parasites is challenging due to limited data and sampling biases. In particular, while more information exists for susceptible hosts, data on resistant species is extremely scant. Echinococcus multilocularis (Leuckart, 1863) (Cestoda: Taeniidae) is the causative agent of alveolar echinococcosis, one of the most significant food-borne zoonoses worldwide. Using data on susceptibility and competence of Holarctic cricetid and murid rodents, key intermediate hosts for E. multilocularis, we developed models to predict the likelihood of infection for any rodent species in the Holarctic. These models incorporated morphological and ecological characteristics and employed two approaches: Generalized Linear Models (GLM) and Presence-Unlabeled Learning (PU-L), a machine learning technique. To train the models, we defined pseudo-absences based on the bias in research effort. We compared the two algorithms and selected GLM as the most effective, using it to map potentially susceptible rodent species across phylogeny and geographic space. Predictions identified several potentially unreported hosts, suggesting that the current understanding of E. multilocularis host distribution may underestimate the true risk. The predicted richness of intermediate hosts peaked in Central-Eastern Europe, Western North America and Central Asia, while the ratio of predicted hosts to total rodent richness was highest in the northern latitudes and the Tibetan Plateau. The average temperature in the geographic range and range size emerged as the strongest predictors of host susceptibility. The workflow demonstrates promise for application to other host-parasite systems with unknown host ranges.http://www.sciencedirect.com/science/article/pii/S1574954125003048SusceptibilityCompetenceRodentEchinococcus multilocularisModelling approachBias |
| spellingShingle | Andrea Simoncini Dimitri Giunchi Marta Marcucci Alessandro Massolo A framework for predicting zoonotic hosts using pseudo-absences: the case of Echinococcus multilocularis Ecological Informatics Susceptibility Competence Rodent Echinococcus multilocularis Modelling approach Bias |
| title | A framework for predicting zoonotic hosts using pseudo-absences: the case of Echinococcus multilocularis |
| title_full | A framework for predicting zoonotic hosts using pseudo-absences: the case of Echinococcus multilocularis |
| title_fullStr | A framework for predicting zoonotic hosts using pseudo-absences: the case of Echinococcus multilocularis |
| title_full_unstemmed | A framework for predicting zoonotic hosts using pseudo-absences: the case of Echinococcus multilocularis |
| title_short | A framework for predicting zoonotic hosts using pseudo-absences: the case of Echinococcus multilocularis |
| title_sort | framework for predicting zoonotic hosts using pseudo absences the case of echinococcus multilocularis |
| topic | Susceptibility Competence Rodent Echinococcus multilocularis Modelling approach Bias |
| url | http://www.sciencedirect.com/science/article/pii/S1574954125003048 |
| work_keys_str_mv | AT andreasimoncini aframeworkforpredictingzoonotichostsusingpseudoabsencesthecaseofechinococcusmultilocularis AT dimitrigiunchi aframeworkforpredictingzoonotichostsusingpseudoabsencesthecaseofechinococcusmultilocularis AT martamarcucci aframeworkforpredictingzoonotichostsusingpseudoabsencesthecaseofechinococcusmultilocularis AT alessandromassolo aframeworkforpredictingzoonotichostsusingpseudoabsencesthecaseofechinococcusmultilocularis AT andreasimoncini frameworkforpredictingzoonotichostsusingpseudoabsencesthecaseofechinococcusmultilocularis AT dimitrigiunchi frameworkforpredictingzoonotichostsusingpseudoabsencesthecaseofechinococcusmultilocularis AT martamarcucci frameworkforpredictingzoonotichostsusingpseudoabsencesthecaseofechinococcusmultilocularis AT alessandromassolo frameworkforpredictingzoonotichostsusingpseudoabsencesthecaseofechinococcusmultilocularis |