A framework for predicting zoonotic hosts using pseudo-absences: the case of Echinococcus multilocularis

Identifying the host range of zoonotic parasites is challenging due to limited data and sampling biases. In particular, while more information exists for susceptible hosts, data on resistant species is extremely scant. Echinococcus multilocularis (Leuckart, 1863) (Cestoda: Taeniidae) is the causativ...

Full description

Saved in:
Bibliographic Details
Main Authors: Andrea Simoncini, Dimitri Giunchi, Marta Marcucci, Alessandro Massolo
Format: Article
Language:English
Published: Elsevier 2025-12-01
Series:Ecological Informatics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1574954125003048
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849233619570130944
author Andrea Simoncini
Dimitri Giunchi
Marta Marcucci
Alessandro Massolo
author_facet Andrea Simoncini
Dimitri Giunchi
Marta Marcucci
Alessandro Massolo
author_sort Andrea Simoncini
collection DOAJ
description Identifying the host range of zoonotic parasites is challenging due to limited data and sampling biases. In particular, while more information exists for susceptible hosts, data on resistant species is extremely scant. Echinococcus multilocularis (Leuckart, 1863) (Cestoda: Taeniidae) is the causative agent of alveolar echinococcosis, one of the most significant food-borne zoonoses worldwide. Using data on susceptibility and competence of Holarctic cricetid and murid rodents, key intermediate hosts for E. multilocularis, we developed models to predict the likelihood of infection for any rodent species in the Holarctic. These models incorporated morphological and ecological characteristics and employed two approaches: Generalized Linear Models (GLM) and Presence-Unlabeled Learning (PU-L), a machine learning technique. To train the models, we defined pseudo-absences based on the bias in research effort. We compared the two algorithms and selected GLM as the most effective, using it to map potentially susceptible rodent species across phylogeny and geographic space. Predictions identified several potentially unreported hosts, suggesting that the current understanding of E. multilocularis host distribution may underestimate the true risk. The predicted richness of intermediate hosts peaked in Central-Eastern Europe, Western North America and Central Asia, while the ratio of predicted hosts to total rodent richness was highest in the northern latitudes and the Tibetan Plateau. The average temperature in the geographic range and range size emerged as the strongest predictors of host susceptibility. The workflow demonstrates promise for application to other host-parasite systems with unknown host ranges.
format Article
id doaj-art-ebf8dae65c7747d48eecf1cebfc331f4
institution Kabale University
issn 1574-9541
language English
publishDate 2025-12-01
publisher Elsevier
record_format Article
series Ecological Informatics
spelling doaj-art-ebf8dae65c7747d48eecf1cebfc331f42025-08-20T05:05:37ZengElsevierEcological Informatics1574-95412025-12-019010329510.1016/j.ecoinf.2025.103295A framework for predicting zoonotic hosts using pseudo-absences: the case of Echinococcus multilocularisAndrea Simoncini0Dimitri Giunchi1Marta Marcucci2Alessandro Massolo3Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, 20133 Milano, ItalyDipartimento di Biologia, Università di Pisa, 56126 Pisa, ItalyDipartimento di Biologia, Università di Pisa, 56126 Pisa, ItalyDipartimento di Biologia, Università di Pisa, 56126 Pisa, Italy; Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada; UMR CNRS 6249 Chrono-environnement, Université Franche-Comté, 25030 Besançon, France; Corresponding author at: Dipartimento di Biologia, Università di Pisa, via Volta 6, 56126 Pisa, PI, Italy.Identifying the host range of zoonotic parasites is challenging due to limited data and sampling biases. In particular, while more information exists for susceptible hosts, data on resistant species is extremely scant. Echinococcus multilocularis (Leuckart, 1863) (Cestoda: Taeniidae) is the causative agent of alveolar echinococcosis, one of the most significant food-borne zoonoses worldwide. Using data on susceptibility and competence of Holarctic cricetid and murid rodents, key intermediate hosts for E. multilocularis, we developed models to predict the likelihood of infection for any rodent species in the Holarctic. These models incorporated morphological and ecological characteristics and employed two approaches: Generalized Linear Models (GLM) and Presence-Unlabeled Learning (PU-L), a machine learning technique. To train the models, we defined pseudo-absences based on the bias in research effort. We compared the two algorithms and selected GLM as the most effective, using it to map potentially susceptible rodent species across phylogeny and geographic space. Predictions identified several potentially unreported hosts, suggesting that the current understanding of E. multilocularis host distribution may underestimate the true risk. The predicted richness of intermediate hosts peaked in Central-Eastern Europe, Western North America and Central Asia, while the ratio of predicted hosts to total rodent richness was highest in the northern latitudes and the Tibetan Plateau. The average temperature in the geographic range and range size emerged as the strongest predictors of host susceptibility. The workflow demonstrates promise for application to other host-parasite systems with unknown host ranges.http://www.sciencedirect.com/science/article/pii/S1574954125003048SusceptibilityCompetenceRodentEchinococcus multilocularisModelling approachBias
spellingShingle Andrea Simoncini
Dimitri Giunchi
Marta Marcucci
Alessandro Massolo
A framework for predicting zoonotic hosts using pseudo-absences: the case of Echinococcus multilocularis
Ecological Informatics
Susceptibility
Competence
Rodent
Echinococcus multilocularis
Modelling approach
Bias
title A framework for predicting zoonotic hosts using pseudo-absences: the case of Echinococcus multilocularis
title_full A framework for predicting zoonotic hosts using pseudo-absences: the case of Echinococcus multilocularis
title_fullStr A framework for predicting zoonotic hosts using pseudo-absences: the case of Echinococcus multilocularis
title_full_unstemmed A framework for predicting zoonotic hosts using pseudo-absences: the case of Echinococcus multilocularis
title_short A framework for predicting zoonotic hosts using pseudo-absences: the case of Echinococcus multilocularis
title_sort framework for predicting zoonotic hosts using pseudo absences the case of echinococcus multilocularis
topic Susceptibility
Competence
Rodent
Echinococcus multilocularis
Modelling approach
Bias
url http://www.sciencedirect.com/science/article/pii/S1574954125003048
work_keys_str_mv AT andreasimoncini aframeworkforpredictingzoonotichostsusingpseudoabsencesthecaseofechinococcusmultilocularis
AT dimitrigiunchi aframeworkforpredictingzoonotichostsusingpseudoabsencesthecaseofechinococcusmultilocularis
AT martamarcucci aframeworkforpredictingzoonotichostsusingpseudoabsencesthecaseofechinococcusmultilocularis
AT alessandromassolo aframeworkforpredictingzoonotichostsusingpseudoabsencesthecaseofechinococcusmultilocularis
AT andreasimoncini frameworkforpredictingzoonotichostsusingpseudoabsencesthecaseofechinococcusmultilocularis
AT dimitrigiunchi frameworkforpredictingzoonotichostsusingpseudoabsencesthecaseofechinococcusmultilocularis
AT martamarcucci frameworkforpredictingzoonotichostsusingpseudoabsencesthecaseofechinococcusmultilocularis
AT alessandromassolo frameworkforpredictingzoonotichostsusingpseudoabsencesthecaseofechinococcusmultilocularis