Gestational diabetes mellitus causes genome hyper-methylation of oocyte via increased EZH2

Abstract Gestational diabetes mellitus (GDM), a common pregnancy disease, has long-term negative effects on offspring health. Epigenetic changes may have important contributions to that, but the underlying mechanisms are not well understood. Here, we report the influence of GDM on DNA methylation of...

Full description

Saved in:
Bibliographic Details
Main Authors: Hong-Yan Guo, Shou-Bin Tang, Li-Jun Li, Jing Lin, Ting-Ting Zhang, Shuo Chao, Xiao-Wen Jin, Kui-Peng Xu, Xiao-Feng Su, Shen Yin, Ming-Hui Zhao, Gui-An Huang, Li-Jia Yang, Wei Shen, Lei Zhang, Cui-Lian Zhang, Qing-Yuan Sun, Zhao-Jia Ge
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-55499-x
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Gestational diabetes mellitus (GDM), a common pregnancy disease, has long-term negative effects on offspring health. Epigenetic changes may have important contributions to that, but the underlying mechanisms are not well understood. Here, we report the influence of GDM on DNA methylation of offspring (GDF1) oocytes and the possible mechanisms. Our results show that GDM induces genomic hyper-methylation of offspring oocytes, and at least a part of the altered methylation is inherited by F2 oocytes, which may be a reason for the inheritance of metabolic disorders. We further find that GDM exposure increases the expression of Ezh2 in oocytes. Ezh2 regulates DNA methylation via DNMT1, and Ezh2 knockdown reduces the genomic methylation level of GDF1 oocytes. These results suggest that GDM may induce oocyte genomic hyper-methylation of offspring via enhancing the Ezh2 expression recruiting more DNMT1 into nucleus.
ISSN:2041-1723