TDP-43 mutants with different aggregation properties exhibit distinct toxicity, axonal transport, and secretion for disease progression in a mouse ALS/FTLD model

TDP-43 accumulates and forms inclusions in neurons in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) and is assumed to cause neurodegenerative processes. The morphologies and cellular and areal distributions of accumulated TDP-43 inclusions are pathologically divers...

Full description

Saved in:
Bibliographic Details
Main Authors: Hideki Mori, Tokiharu Sato, Shintaro Tsuboguchi, Masahiko Takahashi, Yuka Nakamura, Kana Hoshina, Taisuke Kato, Masahiro Fujii, Osamu Onodera, Masaki Ueno
Format: Article
Language:English
Published: Elsevier 2025-08-01
Series:Neurobiology of Disease
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0969996125002049
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:TDP-43 accumulates and forms inclusions in neurons in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) and is assumed to cause neurodegenerative processes. The morphologies and cellular and areal distributions of accumulated TDP-43 inclusions are pathologically diverse among ALS/FTLD patients; however, whether and how different types of TDP-43 affect the process and severity of disease progression are not fully understood. Here, we compared the pathological events evoked by TDP-43 mutations, which have different aggregation properties, in cultured neurons and the cerebral cortex in mice. We selected TDP-43C173/175S and TDP-43G298S as aggregation-prone and nonprone mutants, respectively. Cytoplasmically expressed TDP-43C173/175S induced insoluble inclusions more robustly than TDP-43G298S did. In contrast, TDP-43G298S induced cell death more severely than TDP-43C173/175S. TDP-43G298S was further found to be efficiently transported in axons and led to axon degeneration, while this effect was not obvious in TDP-43C173/175S. Instead, TDP-43C173/175S was frequently trapped in the axon initial segments. Finally, TDP-43G298S was secreted in exosomes and transferred to oligodendrocyte-lineage cells in vitro more efficiently than TDP-43C173/175S to induce cell death. The transfer further evoked cytokine responses in microglial cells. These data revealed that different aggregation properties of TDP-43 cause distinct pathological events. These findings may explain the differences in the neurodegenerative progression and distribution observed among patients with ALS and FTLD.
ISSN:1095-953X