Perbandingan Metode Cost Sensitive pada Decision Tree dan Naïve Bayes untuk Klasifikasi Data Multiclass

Abstrak– Knowledge discovery is the method of extracting information from data in making informed decisions. Seeing as classifiers do have a lot of learning patterns in the data, testing an imbalanced dataset becomes a major classification issue. The cost-sensitive approach on the decision tree C4...

Full description

Saved in:
Bibliographic Details
Main Authors: M Aldiki Febriantono, Sholeh Hadi Pramono, Rahmadwati Rahmadwati
Format: Article
Language:English
Published: Departement of Electrical Engineering, Faculty of Engineering, Universitas Brawijaya 2020-04-01
Series:Jurnal EECCIS (Electrics, Electronics, Communications, Controls, Informatics, Systems)
Subjects:
Online Access:https://jurnaleeccis.ub.ac.id/index.php/eeccis/article/view/625
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846122940308914176
author M Aldiki Febriantono
Sholeh Hadi Pramono
Rahmadwati Rahmadwati
author_facet M Aldiki Febriantono
Sholeh Hadi Pramono
Rahmadwati Rahmadwati
author_sort M Aldiki Febriantono
collection DOAJ
description Abstrak– Knowledge discovery is the method of extracting information from data in making informed decisions. Seeing as classifiers do have a lot of learning patterns in the data, testing an imbalanced dataset becomes a major classification issue. The cost-sensitive approach on the decision tree C4.5 and nave Bayes is used to solve the rule of misclassification. The glass, lympografi, vehicle, thyroid, and wine datasets were collected from the UCI Repository and included in this analysis. Preprocessing attribute selection with particle swarm optimization was used to process the data collection. Besides, the cost-sensitive decision tree C4.5  and the cost-sensitive naive Bayes method were used in the research. On the glass, lympografi, vehicle, thyroid, and wine datasets, the accuracy of the test results was 72.34 %, 68.22 %, 75.68 %, 93.82 %, and 93.95 %, respectively, using the cost-sensitive decision tree C4.5. While the cost-sensitive naive Bayes method outperforms the others by 32.24 %, 82.61 %, 25.53 %, 97.67 %, and 94.94 % on the dataset, respectively.
format Article
id doaj-art-e8d65b90967d46f09ffd2b527cb36ac6
institution Kabale University
issn 2460-8122
language English
publishDate 2020-04-01
publisher Departement of Electrical Engineering, Faculty of Engineering, Universitas Brawijaya
record_format Article
series Jurnal EECCIS (Electrics, Electronics, Communications, Controls, Informatics, Systems)
spelling doaj-art-e8d65b90967d46f09ffd2b527cb36ac62024-12-14T10:55:12ZengDepartement of Electrical Engineering, Faculty of Engineering, Universitas BrawijayaJurnal EECCIS (Electrics, Electronics, Communications, Controls, Informatics, Systems)2460-81222020-04-01141212610.21776/jeeccis.v14i1.625419Perbandingan Metode Cost Sensitive pada Decision Tree dan Naïve Bayes untuk Klasifikasi Data MulticlassM Aldiki Febriantono0Sholeh Hadi Pramono1Rahmadwati Rahmadwati2Universitas Brawijaya MalangUniversitas BrawijayaUniversitas BrawijayaAbstrak– Knowledge discovery is the method of extracting information from data in making informed decisions. Seeing as classifiers do have a lot of learning patterns in the data, testing an imbalanced dataset becomes a major classification issue. The cost-sensitive approach on the decision tree C4.5 and nave Bayes is used to solve the rule of misclassification. The glass, lympografi, vehicle, thyroid, and wine datasets were collected from the UCI Repository and included in this analysis. Preprocessing attribute selection with particle swarm optimization was used to process the data collection. Besides, the cost-sensitive decision tree C4.5  and the cost-sensitive naive Bayes method were used in the research. On the glass, lympografi, vehicle, thyroid, and wine datasets, the accuracy of the test results was 72.34 %, 68.22 %, 75.68 %, 93.82 %, and 93.95 %, respectively, using the cost-sensitive decision tree C4.5. While the cost-sensitive naive Bayes method outperforms the others by 32.24 %, 82.61 %, 25.53 %, 97.67 %, and 94.94 % on the dataset, respectively.https://jurnaleeccis.ub.ac.id/index.php/eeccis/article/view/625cost sensitivedecision treemulticlassnaã¯ve bayes.
spellingShingle M Aldiki Febriantono
Sholeh Hadi Pramono
Rahmadwati Rahmadwati
Perbandingan Metode Cost Sensitive pada Decision Tree dan Naïve Bayes untuk Klasifikasi Data Multiclass
Jurnal EECCIS (Electrics, Electronics, Communications, Controls, Informatics, Systems)
cost sensitive
decision tree
multiclass
naã¯ve bayes.
title Perbandingan Metode Cost Sensitive pada Decision Tree dan Naïve Bayes untuk Klasifikasi Data Multiclass
title_full Perbandingan Metode Cost Sensitive pada Decision Tree dan Naïve Bayes untuk Klasifikasi Data Multiclass
title_fullStr Perbandingan Metode Cost Sensitive pada Decision Tree dan Naïve Bayes untuk Klasifikasi Data Multiclass
title_full_unstemmed Perbandingan Metode Cost Sensitive pada Decision Tree dan Naïve Bayes untuk Klasifikasi Data Multiclass
title_short Perbandingan Metode Cost Sensitive pada Decision Tree dan Naïve Bayes untuk Klasifikasi Data Multiclass
title_sort perbandingan metode cost sensitive pada decision tree dan naa¯ve bayes untuk klasifikasi data multiclass
topic cost sensitive
decision tree
multiclass
naã¯ve bayes.
url https://jurnaleeccis.ub.ac.id/index.php/eeccis/article/view/625
work_keys_str_mv AT maldikifebriantono perbandinganmetodecostsensitivepadadecisiontreedannaavebayesuntukklasifikasidatamulticlass
AT sholehhadipramono perbandinganmetodecostsensitivepadadecisiontreedannaavebayesuntukklasifikasidatamulticlass
AT rahmadwatirahmadwati perbandinganmetodecostsensitivepadadecisiontreedannaavebayesuntukklasifikasidatamulticlass