An ontology-based rare disease common data model harmonising international registries, FHIR, and Phenopackets
Abstract Although rare diseases (RDs) affect over 260 million individuals worldwide, low data quality and scarcity challenge effective care and research. This work aims to harmonise the Common Data Set by European Rare Disease Registry Infrastructure, Health Level 7 Fast Healthcare Interoperability...
Saved in:
Main Authors: | Adam S. L. Graefe, Miriam R. Hübner, Filip Rehburg, Steffen Sander, Sophie A. I. Klopfenstein, Samer Alkarkoukly, Ana Grönke, Annic Weyersberg, Daniel Danis, Jana Zschüntzsch, Elisabeth F. Nyoungui, Susanna Wiegand, Peter Kühnen, Peter N. Robinson, Oya Beyan, Sylvia Thun |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-02-01
|
Series: | Scientific Data |
Online Access: | https://doi.org/10.1038/s41597-025-04558-z |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Maximizing Research on Long COVID using FHIR and OMOP
by: Eugenia RINALDI, et al.
Published: (2024-11-01) -
Den europæiske unions harmonisering af strafferetten
by: Thomas Elholm
Published: (2002-06-01) -
Harmonising Theory: Integrating Singing With Grounded Theory Methods
by: Belinda Densley, et al.
Published: (2025-01-01) -
Semantic‐aware visual consistency network for fused image harmonisation
by: Huayan Yu, et al.
Published: (2023-06-01) -
Aktuell straffrättsutveckling inom EU. Harmonisering och ömsesidigt erkännande
by: Dan Frände
Published: (2007-11-01)