Ensemble estimates of global wetland methane emissions over 2000–2020

<p>Due to ongoing climate change, methane (CH<span class="inline-formula"><sub>4</sub></span>) emissions from vegetated wetlands are projected to increase during the 21st century, challenging climate mitigation efforts aimed at limiting global warming. However...

Full description

Saved in:
Bibliographic Details
Main Authors: Z. Zhang, B. Poulter, J. R. Melton, W. J. Riley, G. H. Allen, D. J. Beerling, P. Bousquet, J. G. Canadell, E. Fluet-Chouinard, P. Ciais, N. Gedney, P. O. Hopcroft, A. Ito, R. B. Jackson, A. K. Jain, K. Jensen, F. Joos, T. Kleinen, S. H. Knox, T. Li, X. Li, X. Liu, K. McDonald, G. McNicol, P. A. Miller, J. Müller, P. K. Patra, C. Peng, S. Peng, Z. Qin, R. M. Riggs, M. Saunois, Q. Sun, H. Tian, X. Xu, Y. Yao, Y. Xi, W. Zhang, Q. Zhu, Q. Zhuang
Format: Article
Language:English
Published: Copernicus Publications 2025-01-01
Series:Biogeosciences
Online Access:https://bg.copernicus.org/articles/22/305/2025/bg-22-305-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:<p>Due to ongoing climate change, methane (CH<span class="inline-formula"><sub>4</sub></span>) emissions from vegetated wetlands are projected to increase during the 21st century, challenging climate mitigation efforts aimed at limiting global warming. However, despite reports of rising emission trends, a comprehensive evaluation and attribution of recent changes remains limited. Here we assessed global wetland CH<span class="inline-formula"><sub>4</sub></span> emissions from 2000–2020 based on an ensemble of 16 process-based wetland models. Our results estimated global average wetland CH<span class="inline-formula"><sub>4</sub></span> emissions at 158 <span class="inline-formula">±</span> 24 (mean <span class="inline-formula">±</span> 1<span class="inline-formula"><i>σ</i></span>) Tg CH<span class="inline-formula"><sub>4</sub></span> yr<span class="inline-formula"><sup>−1</sup></span> over a total annual average wetland area of 8.0 <span class="inline-formula">±</span> <span class="inline-formula">2.0×10<sup>6</sup></span> km<span class="inline-formula"><sup>2</sup></span> for the period 2010–2020, with an average increase of 6–7 Tg CH<span class="inline-formula"><sub>4</sub></span> yr<span class="inline-formula"><sup>−1</sup></span> in 2010–2019 compared to the average for 2000–2009. The increases in the four latitudinal bands of 90–30° S, 30° S–30° N, 30–60° N, and 60–90° N were 0.1–0.2, 3.6–3.7, 1.8–2.4, and 0.6–0.8 Tg CH<span class="inline-formula"><sub>4</sub></span> yr<span class="inline-formula"><sup>−1</sup></span>, respectively, over the 2 decades. The modeled CH<span class="inline-formula"><sub>4</sub></span> sensitivities to temperature show reasonable consistency with eddy-covariance-based measurements from 34 sites. Rising temperature was the primary driver of the increase, while precipitation and rising atmospheric CO<span class="inline-formula"><sub>2</sub></span> concentrations played secondary roles with high levels of uncertainty. These modeled results suggest that climate change is driving increased wetland CH<span class="inline-formula"><sub>4</sub></span> emissions and that direct and sustained measurements are needed to monitor developments.</p>
ISSN:1726-4170
1726-4189