Multimodal cell-free DNA whole-genome TAPS is sensitive and reveals specific cancer signals
Abstract The analysis of circulating tumour DNA (ctDNA) through minimally invasive liquid biopsies is promising for early multi-cancer detection and monitoring minimal residual disease. Most existing methods focus on targeted deep sequencing, but few integrate multiple data modalities. Here, we deve...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-024-55428-y |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract The analysis of circulating tumour DNA (ctDNA) through minimally invasive liquid biopsies is promising for early multi-cancer detection and monitoring minimal residual disease. Most existing methods focus on targeted deep sequencing, but few integrate multiple data modalities. Here, we develop a methodology for ctDNA detection using deep (80x) whole-genome TET-Assisted Pyridine Borane Sequencing (TAPS), a less destructive approach than bisulphite sequencing, which permits the simultaneous analysis of genomic and methylomic data. We conduct a diagnostic accuracy study across multiple cancer types in symptomatic patients, achieving 94.9% sensitivity and 88.8% specificity. Matched tumour biopsies are used for validation, not for guiding the analysis, imitating an early detection scenario. Furthermore, in silico validation demonstrates strong discrimination (86% AUC) at ctDNA fractions as low as 0.7%. Additionally, we successfully track tumour burden and ctDNA shedding from precancerous lesions post-treatment without requiring matched tumour biopsies. This pipeline is ready for further clinical evaluation to extend cancer screening and improve patient triage and monitoring. |
---|---|
ISSN: | 2041-1723 |