Automated multi-model framework for malaria detection using deep learning and feature fusion
Abstract Malaria remains a critical global health challenge, particularly in tropical and subtropical regions. While traditional methods for diagnosis are effective, they face some limitations related to accuracy, time consumption, and manual effort. This study proposes an advanced, automated diagno...
Saved in:
| Main Authors: | Osama R. Shahin, Hamoud H. Alshammari, Raed N. Alabdali, Ahmed M. Salaheldin, Neven Saleh |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Scientific Reports |
| Subjects: | |
| Online Access: | https://doi.org/10.1038/s41598-025-04784-w |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Leveraging an ensemble of EfficientNetV1 and EfficientNetV2 models for classification and interpretation of breast cancer histopathology images
by: Mahdi Azmoodeh-Kalati, et al.
Published: (2025-07-01) -
Perbandingan Kinerja Arsitektur Convolutional Neural Network Pada Deteksi Malaria Menggunakan Citra Sel Darah
by: Agung Wahyu Setiawan
Published: (2025-06-01) -
Semi-analytical and numerical simulation of a coinfection model of Malaria and Zika virus disease
by: E. C. Duru, et al.
Published: (2025-05-01) -
Reforma odlučivanja Evropske unije o proširenju: Lekcije iz bugarskih i grčkih veta za Severnu Makedoniju
by: Yorgos Christidis
Published: (2024-12-01) -
GM2FFNet: Grouped Multiscale Multiangle Feature Fusion Network With Center Attention for Hyperspectral Image Classification
by: Junding Sun, et al.
Published: (2025-01-01)