Iron metabolism and ferroptosis in human health and disease
Abstract Iron is indispensable to most lifeforms, underpinning a myriad of physiological processes. Dysregulation of iron homeostasis underlies a broad spectrum of biological phenomena and pathological conditions. Notably, excessive iron overload acts as a key driver of ferroptosis, a unique form of...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
BMC
2025-08-01
|
| Series: | BMC Biology |
| Subjects: | |
| Online Access: | https://doi.org/10.1186/s12915-025-02378-6 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Iron is indispensable to most lifeforms, underpinning a myriad of physiological processes. Dysregulation of iron homeostasis underlies a broad spectrum of biological phenomena and pathological conditions. Notably, excessive iron overload acts as a key driver of ferroptosis, a unique form of regulated cell death. Consequently, through the lens of ferrology, targeted modulation of iron balance and ferroptosis has emerged as a compelling avenue for the prevention and treatment of major diseases. Herein, we review the molecular mechanisms governing iron homeostasis, the roles of iron metabolism disorders and ferroptosis in disease pathogenesis, and the latest breakthroughs in iron-regulated therapeutic agents. |
|---|---|
| ISSN: | 1741-7007 |