The Class of Demi-Strongly Order Bounded Operators

In this paper, we introduce the class of demi-strongly order bounded operators on a Riesz space generalization of strongly order bounded operators. Let M be a Riesz space, an operator H from M into M is said to be a demi-strongly order bounded operator if for every net {u_α} in M^+ whenever 0≤u_α↑ ≤...

Full description

Saved in:
Bibliographic Details
Main Authors: Gül Sinem Keleş, Birol Altın
Format: Article
Language:English
Published: Sakarya University 2024-04-01
Series:Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi
Subjects:
Online Access:https://dergipark.org.tr/tr/download/article-file/3456529
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we introduce the class of demi-strongly order bounded operators on a Riesz space generalization of strongly order bounded operators. Let M be a Riesz space, an operator H from M into M is said to be a demi-strongly order bounded operator if for every net {u_α} in M^+ whenever 0≤u_α↑ ≤u^'',u^'' in M^(∼∼) and {u_α-H(u_α )} is order bounded in M, then {u_α} is order bounded in M. We obtain a characterization of the b-property by the term of demi-strongly order bounded operators. In addition, we study the relationship between strongly order bounded operators and demi-strongly order bounded operators. Finally, we also investigate some properties of the class of demi-strongly order bounded operators.
ISSN:2147-835X